

# NeoSpectra Micro BLE Interface



# **Legal Information**

## Copyright

Copyright 2019 Si-Ware Systems. All rights reserved.

The information in this document is proprietary and confidential to Si-Ware Systems, and for its customers' internal use. In any event, no part of this document may be reproduced or redistributed in any form without the express written consent of Si-Ware Systems.

#### **Patents**

The technology discussed in this document may be protected by one or more patent grants.

#### Granted

The technology discussed in this document is protected by one or more of the following patent grants:

U.S. Patent No. x,xxx,xxx, y,yyy,yyy. International Patent No. xx,xxx,xxx, and so on. Other relevant patent grants may also exist.

#### **Pending**

The technology discussed in this document is protected by one or more of the following patent applications:

U.S. Application No. x,xxx,xxx, y,yyy,yyy, and so on. International Application No. x,xxx,xxx, y,yyy,yyy and so on. Other relevant patent applications may also exist.



# References

- 1. Si-Ware Systems. Document Control Procedure. SWS-12010001 a1. September 26, 2012.
- NeoSpectra™ SWS62231 Development Kits' Developer Manual. SWS internal document, accessed: 7 March 2018.



# **Table of Contents**

| L | ÆGAL INF | ORMATION                 | 2  |
|---|----------|--------------------------|----|
| R | REFERENC | ES                       | 3  |
| 1 |          | DUCTION                  |    |
| 2 |          | TS STRUCTURE             |    |
|   | 2.1 Con  | MMAND PACKETS FORMAT     | 5  |
|   | 2.2 RES  | SPONSE PACKETS FORMAT    | 6  |
| 3 | COMM     | ANDS AND RESPONSES       | 6  |
|   | 3.1 Con  | MMANDS                   | 6  |
|   | 3.1.1    | runPSD                   | 6  |
|   | 3.1.2    | runBackground            |    |
|   | 3.1.3    | runAbsorbance            |    |
|   | 3.1.4    | runGainAdj               | 7  |
|   | 3.1.5    | burnGain                 | 7  |
|   | 3.1.6    | burnSelf                 |    |
|   | 3.1.7    | burnWLN                  |    |
|   | 3.1.8    | runSelfCorr              | 8  |
|   | 3.1.9    | runWavelengthCorrBG      |    |
|   | 3.1.10   | runWavelengthCorr        |    |
|   | 3.1.11   | restoreDefaults          |    |
|   | 3.1.12   | setSourceSettings        |    |
|   | 3.1.13   | setOpticalSettings       |    |
|   | 3.1.14   | setCalibrationWells_1    |    |
|   | 3.1.15   | setCalibrationWells_2    | 9  |
|   | 3.2 RES  | SPONSES                  | 10 |
|   | 3.2.1    | runPSD and runAbsorbance | 10 |
|   | 3.2.2    | runGainAdj               |    |
|   | 3.2.3    | Rest of Operations       | 10 |



#### 1 Introduction

This document describes the BLE interface of NeoSpectra Micro DVK Bluetooth communication service on the Raspberry PI zero w board.

The BLE communication service is based on Nordic UART Service (NUS). NUS Application is a firmware example that emulates a serial port over BLE.

The UUID of the Nordic UART Service is "6E400001-B5A3-F393-E0A9-E50E24DCCA9E".

This service exposes two characteristics; one for transmitting and another for receiving.

- Tx Characteristic with UUID "6E400003-B5A3-F393-E0A9-E50E24DCCA9E".
- Rx Characteristic with UUID "6E400002-B5A3-F393-E0A9-E50E24DCCA9E".

When the peer enables notification for the Tx Characteristic, the DVK can send data to the peer as notifications. The DVK will transmit all data over UART as notifications.

Peer can start sending data to the DVK by writing to the Rx Characteristic of the service.

The maximum amount of user data in a packet is 20 bytes. If number of bytes needed is less than 20 bytes, then the rest of user data bytes are neglected.

## 2 Packets Structure

#### 2.1 Command Packets Format

The following table contains description of each filed of the command packet.

| Packet         | Size (bytes) | Data Type | Description                                                                                                                                                                                     |
|----------------|--------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Operation ID   | 1            | Int       | Specify the operation number requested                                                                                                                                                          |
| scanTime       | 3            | Int       | Duration of the scan in milliseconds with a minimum of 10 ms and a maximum of 2 <sup>24</sup> ms                                                                                                |
| commonWavNum   | 1            | Int       | Specify the number of points used for the wave number: 0: Disable common wave number 1: 65 points. 2: 129 points. 3: 257 points. 4: 513 points. 5: 1024 points. 6: 2048 points. 7: 4096 points. |
| opticalGain    | 1            | Int       | 0: use the optical gain settings saved on the DVK.     1: use the calculated optical gain settings.     2: use external optical gain settings.                                                  |
| apodizationSel | 1            | Int       | Select one of the apodization windows:  0: Boxcar                                                                                                                                               |

SWS-12010001 d1

PROPRIETARY AND CONFIDENTIAL INFORMATION



|             |   |     | 1: Gaussian<br>2: Happ-Genzel<br>3: Lorenz                                                |
|-------------|---|-----|-------------------------------------------------------------------------------------------|
| zeroPadding | 1 | Int | Specify the number of points used in the FFT: 1: 8k points. 2: 16k points. 3: 32k points. |
| Mode        | 1 | Int | Select the required run mode: 0: Single mode 1: Reserved (Not supported)                  |

# 2.2 Response Packets Format

The response which is received as a reply to different command packets has the following format:

| Packet 1  | Status(1 byte) Data Length(2 bytes) Zeros(rest of bytes)             |  |  |
|-----------|----------------------------------------------------------------------|--|--|
| N Packets | Payload packets (20 bytes maximum user data for each). The number of |  |  |
|           | these packets depends on the data length sent in packet 1.           |  |  |

According to the statue byte in packet 1, the payload packets can be received or not based on the following scheme:

- Status = 0 -> No Errors, payload packet can be acquired.
- Status = otherwise -> Error, no payload packet can be acquired.

# 3 Commands and Responses

#### 3.1 Commands

#### 3.1.1 runPSD

 Description: Requests to perform a scan and returns a Power Spectral Density (PSD).

| Operation ID   | 3        |
|----------------|----------|
| scanTime       | Required |
| commonWavNum   | Required |
| opticalGain    | Required |
| apodizationSel | Required |
| zeroPadding    | Required |
| Mode           | Required |

# 3.1.2 runBackground

Description: Request to perform a background reading.

| Operation ID   | 4        |
|----------------|----------|
| scanTime       | Required |
| commonWavNum   | Required |
| opticalGain    | Required |
| apodizationSel | Required |
| zeroPadding    | Required |

SWS-12010001 d1

PROPRIETARY AND CONFIDENTIAL INFORMATION



| Mode   | Required  |
|--------|-----------|
| 111000 | i reganou |

#### 3.1.3 runAbsorbance

- Description: Request to perform a scan and returns the absorbance.
- · Prerequisite operation: "runBackground".

| Operation ID   | 5        |
|----------------|----------|
| scanTime       | Required |
| commonWavNum   | Required |
| opticalGain    | Required |
| apodizationSel | Required |
| zeroPadding    | Required |
| Mode           | Required |

# 3.1.4 runGainAdj

• Description: Calculate the required gain for a certain sample.

| Operation ID   | 6            |
|----------------|--------------|
| scanTime       | Not Required |
| commonWavNum   | Not Required |
| opticalGain    | Not Required |
| apodizationSel | Not Required |
| zeroPadding    | Not Required |
| Mode           | Not Required |

#### 3.1.5 burnGain

• Description: Burns the calculated gain adjustment on the DVK.

| Operation ID   | 7            |
|----------------|--------------|
| scanTime       | Not Required |
| commonWavNum   | Not Required |
| opticalGain    | Not Required |
| apodizationSel | Not Required |
| zeroPadding    | Not Required |
| Mode           | Not Required |

#### 3.1.6 burnSelf

• Description: Burns the self-correction parameters on the DVK.

| Operation ID   | 8            |
|----------------|--------------|
| scanTime       | Not Required |
| commonWavNum   | Not Required |
| opticalGain    | Not Required |
| apodizationSel | Not Required |
| zeroPadding    | Not Required |
| Mode           | Not Required |

#### 3.1.7 burnWLN

Description: Burns the wavelength correction parameters on the DVK.

SWS-12010001 d1

PROPRIETARY AND CONFIDENTIAL INFORMATION



| Operation ID   | 9            |
|----------------|--------------|
| scanTime       | Not Required |
| commonWavNum   | Not Required |
| opticalGain    | Not Required |
| apodizationSel | Not Required |
| zeroPadding    | Not Required |
| Mode           | Not Required |

#### 3.1.8 runSelfCorr

Description: Calculates the self-correction parameters.

| Operation ID   | 10           |
|----------------|--------------|
| scanTime       | Required     |
| commonWavNum   | Required     |
| opticalGain    | Required     |
| apodizationSel | Required     |
| zeroPadding    | Required     |
| Mode           | Not Required |

# 3.1.9 runWavelengthCorrBG

• Description: Takes a background reading for the wavelength correction.

| Operation ID   | 11           |
|----------------|--------------|
| scanTime       | Required     |
| commonWavNum   | Required     |
| opticalGain    | Required     |
| apodizationSel | Required     |
| zeroPadding    | Required     |
| Mode           | Not Required |

# 3.1.10 run Wavelength Corr

- Description: performs the wavelength correction.
- Prerequisite Operation: "runWavelengthCorrBG".

| Operation ID   | 12           |
|----------------|--------------|
| scanTime       | Required     |
| commonWavNum   | Required     |
| opticalGain    | Required     |
| apodizationSel | Required     |
| zeroPadding    | Required     |
| Mode           | Not Required |

#### 3.1.11 restore Defaults

Description: restores the default gain and correction parameters.

| Operation ID | 13       |
|--------------|----------|
| scanTime     | Required |
| commonWavNum | Required |

SWS-12010001 d1

PROPRIETARY AND CONFIDENTIAL INFORMATION



| opticalGain    | Required |
|----------------|----------|
| apodizationSel | Required |
| zeroPadding    | Required |
| Mode           | Required |

## 3.1.12 setSourceSettings

- Description: Set all light source configurations needed to turn on/off the light source.
- This operation has a special command packet format.

| Operation ID | 22         |
|--------------|------------|
| Lamps Count  | One byte.  |
| Lamp Select  | One byte.  |
| Reserved     | Two bytes. |
| T1           | One byte.  |
| Delta T      | One byte.  |
| Reserved     | Two bytes. |
| T2_C1        | One byte.  |
| T2_C2        | One byte.  |
| T2 max       | One byte.  |

## 3.1.13 setOpticalSettings

- Description: Select the optical gain settings to be used during the scan.
- This operation has a special command packet format.

| Operation ID       | 27         |
|--------------------|------------|
| optical gain value | Two bytes. |

## 3.1.14 setCalibrationWells\_1

- Description: Set the first three values of the calibration wells.
- This operation has a special command packet format.
- Note: The calibration wells must be quantized by fraction length of 20.

| Operation ID                   | 90         |
|--------------------------------|------------|
| first calibration wells value  | Four bytes |
| second calibration wells value | Four bytes |
| third calibration wells value  | Four bytes |

#### 3.1.15 setCalibrationWells\_2

- Description: Set the last two values of the calibrationwells.
- This operation has a special command packet format.
- Note: The calibration wells must be quantized by fraction length of 20.

| Operation ID                   | 91         |
|--------------------------------|------------|
| fourth calibration wells value | Four bytes |
| fifth calibration wells value  | Four bytes |



# 3.2 Responses

#### 3.2.1 runPSD and runAbsorbance

Number of payload packets is determined according to following rules:

- 1. commonWavNum in command packet is disabled (Taking value 0):
  - Data received contains y-axis (PSD/Absorbance) double values followed by x-axis (Wave Number) double values.
  - Data length received in packet 1 = number of double values of PSD/Absorbance
  - Payload packets = ceil[(data length in packet 1) \* 8 \* 2 / 20]
  - 8 -> length of double data.
  - 2 -> duplicate data length for both y and x values.
  - 20 -> maximum number of user data bytes per packet.
  - After receiving all bytes for double data from the payload packets, yaxis and x-axis values can be interpreted by constructing double values from the received bytes.
- 2. commonWavNum in command packet is enabled (Taking any value other than 0):
  - Data received contains y-axis (PSD/Absorbance) double values followed by x-initial and x-step Init64 values.
  - Data length received in packet 1 = number of values of PSD/Absorbance.
  - Payload packets = ceil[(data length in packet 1 + 2) \* 8 / 20]
  - 2 -> two extra Init64 values for x-initial and x-step.
  - 8 -> length of double data.
  - 20 -> maximum number of user data bytes per packet.
  - After receiving all bytes from the payload packets, y-axis values can be interpreted by constructing double values from the received bytes.
  - X-initial and x-step can be interpreted by constructing Int64 vales from the received bytes.
  - X-axis values can be interpreted as follows:
    - i. X(i+1) = X(i) + x-step
    - ii. X-initial is value for X(1).
  - After interpreting x-axis values, they have to be converted from Int64 to double as follows:
    - i. X(i) = (X(i) >> 3) \* 10000
    - ii. X(i) = X(i) / (1 << 30)

# 3.2.2 runGainAdj

- Data length received in packet 1 = 2 bytes which represents the gain value.
- One payload packet is received with gain value represented in the first two bytes.

# 3.2.3 Rest of Operations

- Data length received in packet 1 = 1
- One payload packet is received with 20 bytes of random data.