

PROPRIETARY AND CONFIDENTIAL INFORMATION TO SI-WARE SYSTEMS
© Copyright 2018 Si-Ware Systems

NeoSpectra™ SWS62231 –

Development Kits’ Developer

Manual

NeoSpectra™ SWS62231
– Development Kits’
Developer Manual

SWS-16120001 d1

 Copyright 2018 Si-Ware Systems. This information may contain privileged, proprietary and confidential information and shall not be disclosed,
copied, distributed, reproduced or used in whole or in part without prior written permission from Si-Ware Systems

2 of 41

Information in this document is provided in connection with Si-Ware Systems products.
These materials are provided by Si-Ware Systems as a service to its customers and
may be used for informational purposes only. Si-Ware Systems assumes no
responsibility for errors or omissions in these materials. Si-Ware Systems may make
changes to its products, specifications, and product descriptions at any time, without
notice. Si-Ware Systems makes no commitment to update the information and shall
have no responsibility whatsoever for conflicts, incompatibilities, or other difficulties
arising from future changes to its products and product descriptions. No license,
express or implied, by estoppels or otherwise, to any intellectual property rights is
granted by this document. Except as may be provided in Si-Ware Systems’ Terms and
Conditions of Sale for such products, Si-Ware Systems assumes no liability
whatsoever.

Copyright

Copyright © 2018 Si-Ware Systems. All rights reserved.
The information in this document is proprietary to Si-Ware Systems, and for its
customers’ internal use. In any event, no part of this document may be reproduced or
redistributed in any form without the express written consent of Si-Ware Systems.

Contacts

For technical assistance, please contact:

Si-Ware Systems
3, Khaled Ibn Al-Waleed St.
Sheraton, Heliopolis
Cairo 11361, Egypt

Tel.: + 20 222 68 47 04
Email: neospectra.support@si-ware.com

Trademarks

NeoSpectra™ and SpectroMOST™ are trademarks of Si-Ware Systems

mailto:neospectra.support@si-ware.com

NeoSpectra™ SWS62231
– Development Kits’
Developer Manual

SWS-16120001 d1

 Copyright 2018 Si-Ware Systems. This information may contain privileged, proprietary and confidential information and shall not be disclosed,
copied, distributed, reproduced or used in whole or in part without prior written permission from Si-Ware Systems

3 of 41

Contents
DEVELOPER MODES .. 4

CHAPTER 1 MODE 1: USING SPI INTERFACE .. 5
1. Requirements .. 5
2. Interface .. 5
3. Registers Description .. 6
4. SPI Slave User Guide ... 9
5. Detailed Examples of Operations .. 10

CHAPTER 2 MODE 2: USING NEOSPECTRA SPI COMMUNICATION SERVICE 14
1. Requirements .. 14
2. Interface .. 14
3. Development package & architecture ... 14
4. Commands .. 15

CHAPTER 3 SDK .. 25
1. Installation ... 25
2. Software Architecture .. 25
3. APIs ... 26
4. Sequence diagrams .. 37

NeoSpectra™ SWS62231
– Development Kits’
Developer Manual

SWS-16120001 d1

 Copyright 2018 Si-Ware Systems. This information may contain privileged, proprietary and confidential information and shall not be disclosed,
copied, distributed, reproduced or used in whole or in part without prior written permission from Si-Ware Systems

4 of 41

Developer modes

NeoSpectra™ SWS62231
– Development Kits’
Developer Manual

SWS-16120001 d1

 Copyright 2018 Si-Ware Systems. This information may contain privileged, proprietary and confidential information and shall not be disclosed,
copied, distributed, reproduced or used in whole or in part without prior written permission from Si-Ware Systems

5 of 41

Chapter 1 Mode 1: Using SPI Interface

NeoSpectra Micro DVK allows direct communication through SPI with SPI
master. SPI driver can be built on the Raspberry PI board or on any other
development boards which contain SPI master interface.
The description of the SPI slave interface is explained in this section.

1. Requirements
 NeoSpectra Micro DVK.

 Customer board connected to the NeoSpectra Micro DVK through SPI.

2. Interface
Remove the raspberry pi board entirely and use NeoSpectra Micro DVK board
only by connecting it to an external power supply and interface with it through
SPI

*
 interface and IOs as shown in Figure.1: NeoSpectra Micro DVK Pins .

Pin 1
Pin 3

Pin 2
Pin 4

Pin 17
Pin 19
Pin 21
Pin 23
Pin 25

Pin 18
Pin 20
Pin 22
Pin 24
Pin 26

Figure.1: NeoSpectra Micro DVK Pins

The pins assignment of NeoSpectra Micro DVK is as shown in the following
table.

Pin number Function

Pin 1 Not connected

Pin 2 VDD +5v

Pin 3 GND

Pin 4 VDD +5v

Pin 17 Not connected

Pin 18 Data Ready Pin

Pin 19 SPI MOSI

Pin 20 GND

Pin 21 SPI MISO

Pin 22 Interrupt Pin

Pin 23 SPI Clk

Pin 24 SPI CSB

Pin 25 GND

Pin 26 External Trigger Pin

*
 The maximum SPI rate to be used is 1MHz

NeoSpectra™ SWS62231
– Development Kits’
Developer Manual

SWS-16120001 d1

 Copyright 2018 Si-Ware Systems. This information may contain privileged, proprietary and confidential information and shall not be disclosed,
copied, distributed, reproduced or used in whole or in part without prior written permission from Si-Ware Systems

6 of 41

3. Registers Description
(= Register Possible Values)

Register Name

Width
(Bits)

Description

Type

Address

Offset
(Bits)

Fixed-Point
Quantization
Length (Bits)

†

MODULE_ID 64 DVK ID. R 0 0

AUTO_INCB 1

Address Auto increment enable (Active Low)
0  Auto increment feature is enabled, which
means multiple addresses of register file can
be accessed in a single frame.
1 (default)  Auto increment feature is
disabled, which means only one address can
be accessed in a single frame. R/W 12 0

SNGL_CNT_MODE 4

Choose between the single and continuous
modes of scanning.
The continuous mode boosts the speed of
scanning during specific period.
(only valid during ACQUIRE_PSD & RUN_

SPECTRUM _SAMPLE commands)
0 (default)  single mode scanning.
4  continuous mode scanning. R/W 13 1

XZP 2

Selects the zero padding option which is
used to specify FFT number of points:
0 (default) or 1  1X (8k points).
2  2X (16k points).
3  4X (32k points). R/W 13 5

EN_COMMON_WAVE 1

Enables the Common wave number feature
(linear interpolation)
0 (default)  disabled.
1  enabled. R/W 13 7

UNIT_CONV 1

Selects the unit of the Wavenumber
0 (default) wavenumber.
1 wavelength. R/W 14 0

OPT_GAIN_SET_SEL 2

Selects which optical gain settings to use
during the scan
0 (default)  Flashed optical gain settings
1  last calculated optical gain settings
2  External optical gain settings R/W 14 1

WIN_SEL 3

Selects the used window for Apodization
0 (default)  No window is applied (boxcar).
1  Gaussian.
2  Happ-Genzel.
3  Lorenz.
4  External coefficients. R/W 14 3

SCAN_TIME 24
This register defines the scan time in milli-
seconds. R/W 16 0

PSD_NO_POINTS 13

Selects the number of points of the PSD and
corresponding wave number (Up to 4K
samples)
*valid only in case EN_COMMON_WAVE = 1. R/W 20 0

PSD_LENGTH 13
Output PSD length (in samples) (Up to 4 K
samples). R 22 0

INITIATE_OPERATION 8
Writing this register initiates a certain
operation that corresponds to the written R/W 24 0

†
 This field indicates whether the register represent a fixed-point value or a normal value. If it’s

a fixed-point value , then

the corresponding double-precision number = register value / 2
quatization_length

NeoSpectra™ SWS62231
– Development Kits’
Developer Manual

SWS-16120001 d1

 Copyright 2018 Si-Ware Systems. This information may contain privileged, proprietary and confidential information and shall not be disclosed,
copied, distributed, reproduced or used in whole or in part without prior written permission from Si-Ware Systems

7 of 41

code.
 1  ACQUIRE_PSD Initiates PSD acquisition operation.

 2  RUN_SELF_CORR

Initiates the self-correction routine but will not
write the output on Flash. The results will be
stored on a volatile SRAM. It will not be kept
after power down unless written on flash by
user.

 3 
RUN_REF_MTR_CORR_BG

Initiates background reading taken to perform
reference material correction.

 4  RUN_REF_MTR_CORR

Initiates reference material sample reading and
run reference material correction routine.
*must be done after RUN_REF_MTR_CORR_BG
command.

 5 
RUN_OPT_GAIN_ADJST

Initiates the Optical gain adjustment routine.
After its completion, the results will be stored
on OPT_GAIN_SET_OUT register.

 7  WR_WIN_REQ External apodization window write request.

 8  RD_PSD_WVN_REQ PSD or WVN read request.

 10  RD_WIN_SMPL_REQ
Generated apodization window samples read
request.

 11 
PGM_SELF_CORR_COEFF Stores the results of Self Correction on Flash.

 12 
PGM_REF_MTR_COEFF

Stores the results of Reference Material
Correction on Flash.

 13  PGM_OPT_GAIN_SET
Stores the results of Optical gain adjustment on
Flash.

 15 
RESTORE_FACTORY_CORR

Restore the original values of Self Correction,
Reference Material Correction and Optical Gain
Adjustment. And clear any values the user
previously stored on Flash.

 16  RUN_REFLECTANCE
_BG Performs a background scan.

 17 
RUN_REFLECTANCE_SAMP
LE

Performs a sample scan and calculate the
absorbance.
*must be done after RUN_REFLECTANCE _BG
command.

ABORT_OPERATION 1

This register is used to exit the continuous
mode scanning and will put the DVK to an
idle state.
It can be used to cancel any ongoing
operation. WO 28 0

SPCTRM_DATA_OUT 8 Calculated Spectrum. R 32 0 33

DVK_VERSION 32 Version of the software on the DVK. R 36 0

WAVE_NUM_DATA_OUT 8 Calculated Wavenumber or Wavelength. R 40 0 30

SOURCE_LAMPS_COUNT 8

Number of lamps to operate from the source.
1  one active lamp.
2 (default)  two active lamps. R/W 41 0

SOURCE_LAMP_SEL 8

In case the value written in
SOURCE_LAMPS_COUNT is 1, this register
determines which lamp to operate
0  lamp0 is active.
1  lamp1 is active. R/W 42 0

SOURCE_T1 8

Delay time after opening the source in 50 ms
unit.
0 (default)  0 ms.
1  50 ms.
2  100ms.
etc… R/W 44 0

SOURCE_T2 8

Delay time before closing the source in 50
ms unit.
0 (default)  0 ms.
1  50 ms.
2  100ms.
etc… R/W 45 0

NeoSpectra™ SWS62231
– Development Kits’
Developer Manual

SWS-16120001 d1

 Copyright 2018 Si-Ware Systems. This information may contain privileged, proprietary and confidential information and shall not be disclosed,
copied, distributed, reproduced or used in whole or in part without prior written permission from Si-Ware Systems

8 of 41

SOURCE_DELTA_T 8

Delay time between opening/closing the two
lamps of the source in 50 ms unit.
0  0 ms.
1  50 ms.
2 (default)  100ms.
etc… R/W 46 0

SOURCE_AUTO_MODE 1

Writing 0 to this register will make the source
switched off even during scans.
0  Reserved.
1 (default)  Automatic mode of the source. R/W 47 0

GENERIC_DATA_OUT_LEN 16 Other data out Length register (in samples). R 48 0

GENERIC_DATA_OUT 8 Other generic data output register. R 50 0
Based on data

type

STATUS 32

Status of the requested operation. To be
checked after OPERATION_RDY = 1 to know
whether the requested operation completed
successfully or not.
0 (default) No error.
Any other value  error. R 56 0

OPERATION_RDY 1

When ‘1’ Indicates no operation is in
progress. User shouldn’t perform any action
while register is 0.
0  DVK is busy. User should wait.
1 (default)  DVK is ready for actions. R 60 0

INTRPT 1

Indicates whether an error has occurred in
the requested operation or not.
0 (default)  No error.
1  error. R 60 1

REF_MTR_WELL_0 32

Reference material well 0 used in reference
material correction.
*(if = zero  will not be used) R/W 64 0 20

REF_MTR_WELL_1 32

Reference material well 1 used in reference
material correction.
*(if = zero  will not be used) R/W 68 0 20

REF_MTR_WELL_2 32

Reference material well 2 used in reference
material correction.
*(if = zero  will not be used) R/W 72 0 20

REF_MTR_WELL_3 32

Reference material well 3 used in reference
material correction.
*(if = zero  will not be used) R/W 76 0 20

REF_MTR_WELL_4 32

Reference material well 4 used in reference
material correction.
*(if = zero  will not be used) R/W 80 0 20

GENERIC_DATA_IN_LEN 16
Determines the length of external stream in
vector (in samples) R/W 84 0

GENERIC_DATA_IN 8

Incrementally accepts different stream in
data after requesting its corresponding
command. R/W 86 0

Based on data
type

OPT_GAIN_SET_EXT 16

This register defines the settings of the
optical gain adjustment routine and is
divided as follows:
Bits 0-2: Current range settings.
Bits 3-5: PGA1 settings.
Bits 6-8: PGA2 settings.
Bits 9-15: reserved.

R/W 92 0

OPT_GAIN_SET_OUT 16
This register holds the output of the Optical
gain adjustment routine. R 94 0

NeoSpectra™ SWS62231
– Development Kits’
Developer Manual

SWS-16120001 d1

 Copyright 2018 Si-Ware Systems. This information may contain privileged, proprietary and confidential information and shall not be disclosed,
copied, distributed, reproduced or used in whole or in part without prior written permission from Si-Ware Systems

9 of 41

4. SPI Slave User Guide
SPI_MODE (SPI is selected when CSB=0)

For user to write a certain register:
1- Opens a communication frame (CSB=0)
2- In the first 8 clock cycles, transmit the address of the register (7 bits) starting with
MSB concatenated with '0' in the first bit
3- Transmit the required data to be written in the following bytes
4- Close the communication frame (CSB=1)

SPI_SSB

SPI_SCK

0SPI_MOSI

SPI_MISO

AD5 AD4 AD3 AD2 AD1 AD0 Di(W-1) Di(W-2) Di(W-3) Di(1) Di(0)

command address data in

AD6

For user to read a certain register:
1- Opens a communication frame (CSB=0)
2- Transmit the address of the register (7 bits) concatenated with '1' in the first bit in the
first 8 clock cycles
3- Transmit a number of dummy bytes equal to the number of bytes to be read in the
following frame bytes + 1.
4- The data to be read will be available starting from the second byte of the dummy
bytes (i.e. the third byte in total)
5- Close the communication frame (CSB=1)

SPI_SCK

1SPI_MOSI AD5 AD4 AD3 AD2 AD1 AD0

command address

AD6

SPI_SSB

SPI_MISO Do(0)Do(W-2) Do(W-3) Do(1)Do(W-1)

data out*Dummy Byte

General Rules

- Writing in register file is valid only as long as OPERATION_RDY = 1 except for

ABORT_OPERATION

- Once a new operation is requested (INITIATE_OPEARTION register is written)

OPERATION_RDY goes to ‘0’ and writing is not valid until operation is ended.

- Streaming in/out data has to be done in one single frame with AUTO_INCB = 1

- If ACQUIRE_PSD operation is initiated in one of the continuous modes, it will

keep running infinitely and all other operations can’t be requested again unless

operation is aborted through ABORT_OPERATION register. This takes

NeoSpectra Micro DVK again to the idle state.

- INTRPT register/pin can be used to track status for the on-going operation or

after operation ends.

NeoSpectra™ SWS62231
– Development Kits’
Developer Manual

SWS-16120001 d1

 Copyright 2018 Si-Ware Systems. This information may contain privileged, proprietary and confidential information and shall not be disclosed,
copied, distributed, reproduced or used in whole or in part without prior written permission from Si-Ware Systems

10 of 41

For user to request ANY operation: (General Rule)

1- Poll on OPERATION_RDY register until it becomes ‘1’
2- Write the needed configuration registers (resolution, scan time…)
3- Write the required command in INITIATE_OPERATION register.
4- Poll on OPERATION_RDY register to be '1' or wait for OPERATION_RDY interrupt
indicating end of operation

5. Detailed Examples of Operations

Below are examples of different user operations described in detailed steps.

 Acquire_PSD operation and read the results directly:

1- Poll on OPERATION_RDY register until it becomes ‘1’ or wait for the
OPERATION_RDY pin
2- Write the needed configuration registers (scan time,...)
3- Write AUTO_INCB = 1
4- Write “ACQUIRE_PSD” code in INITIATE_OPERATION register
5- Poll on OPERATION_RDY register till it becomes ‘1’ or wait for the
OPERATION_RDY pin (If INTRPT reg/pin is set during this waiting period, this
indicates a warning, read STATUS register to check it)
6- Read STATUS register to check the status of the operation
7- Read PSD_LENGTH register
8- Read the PSD from SPCTRM_DATA_OUT register successively in one frame with
the number of samples determined by PSD_LENGTH
9- Close the communication frame
10- Read the Wave number vector from WAVE_NUM_DATA_OUT register
successively in one frame with the number of samples determined by PSD_LENGTH
11- Close the communication frame

 Acquire_PSD operation and read the results directly with continuous mode:

1- Poll on OPERATION_RDY register until it becomes ‘1’ or wait for the
OPERATION_RDY pin
2- Write the needed configuration registers (scan time,...)
3- Write ‘4’ to SNGL_CNT_MODE register for selecting continuous scanning mode
4- Write AUTO_INCB = 1
5- Write “ACQUIRE_PSD” code in INITIATE_OPERATION register
6- Poll on OPERATION_RDY register till it becomes ‘1’ or wait for the
OPERATION_RDY pin (If INTRPT reg/pin is set during this waiting period, this
indicates a warning, read STATUS register to check it)
7- Read STATUS register to check the status of the operation
8- Read PSD_LENGTH register
9- Read the PSD from SPCTRM_DATA_OUT register successively in one frame with
the number of samples determined by PSD_LENGTH
10- Close the communication frame
11- Read the Wave number vector from WAVE_NUM_DATA_OUT register
successively in one frame with the number of samples determined by PSD_LENGTH
12- Close the communication frame
13- After reading both PSD & WVN, OPERATION_RDY register (and pin) should
automatically go to ‘0’. So the user should loop on the steps from 613 to acquire
further scans without the need for initiating new commands
14- For exiting the continuous mode, write SNGL_CNT_MODE = ‘0’. Then acquire one
last PSD & WVN. OPERATION_RDY register (and pin) should stay ‘1’ after that last
acquisition until any further command is requested

NeoSpectra™ SWS62231
– Development Kits’
Developer Manual

SWS-16120001 d1

 Copyright 2018 Si-Ware Systems. This information may contain privileged, proprietary and confidential information and shall not be disclosed,
copied, distributed, reproduced or used in whole or in part without prior written permission from Si-Ware Systems

11 of 41

 RUN_OPT_GAIN_ADJST operation to apply gain adjustment routine:

1- Poll on OPERATION_RDY register until it becomes ‘1’ or wait for the
OPERATION_RDY pin
2- Write the needed configuration registers (scan time,...)
3- Write AUTO_INCB = 1
4- Write “RUN_OPT_GAIN_ADJST” code in INITIATE_OPERATION register
5- Poll on OPERATION_RDY register till it becomes ‘1’ or wait for the
OPERATION_RDY pin (If INTRPT reg/pin is set during this waiting period, this
indicates a warning, read STATUS register to check it)
6- Read STATUS register to check the status of the operation
7- Write OPT_GAIN_SET_SEL = 1 to use the calculated gain value in the upcoming
measurements.

 PGM_OPT_GAIN_SET operation to store the result of gain adjustment routine
on flash:

1- Poll on OPERATION_RDY register until it becomes ‘1’ or wait for the
OPERATION_RDY pin.
3- Write AUTO_INCB = 1
4- Write “PGM_OPT_GAIN_SET” code in INITIATE_OPERATION register
5- Poll on OPERATION_RDY register till it becomes ‘1’ or wait for the
OPERATION_RDY pin (If INTRPT reg/pin is set during this waiting period, this
indicates a warning, read STATUS register to check it)
6- Read STATUS register to check the status of the operation
7- Write OPT_GAIN_SET_SEL = 0 to use the flashed gain value in the upcoming
measurements.

 RUN_SELF_CORR operation to apply self-correction routine:

1- Poll on OPERATION_RDY register until it becomes ‘1’ or wait for the
OPERATION_RDY pin
2- Write the needed configuration registers (scan time,...)
3- Write AUTO_INCB = 1
4- Write “RUN_SELF_CORR” code in INITIATE_OPERATION register
5- Poll on OPERATION_RDY register till it becomes ‘1’ or wait for the
OPERATION_RDY pin (If INTRPT reg/pin is set during this waiting period, this
indicates a warning, read STATUS register to check it)
6- Read STATUS register to check the status of the operation

 PGM_SELF_CORR_COEFF operation to store the result of self-correction
routine on flash:

1- Poll on OPERATION_RDY register until it becomes ‘1’ or wait for the
OPERATION_RDY pin
2- Write the needed configuration registers (scan time,...)
3- Write AUTO_INCB = 1
4- Write “PGM_SELF_CORR_COEFF” code in INITIATE_OPERATION register
5- Poll on OPERATION_RDY register till it becomes ‘1’ or wait for the
OPERATION_RDY pin (If INTRPT reg/pin is set during this waiting period, this
indicates a warning, read STATUS register to check it)
6- Read STATUS register to check the status of the operation

 RUN_REF_MTR_CORR_BG operation to apply reference material correction
routine (background scan):

1- Poll on OPERATION_RDY register until it becomes ‘1’ or wait for the
OPERATION_RDY pin.

2- Write the needed configuration registers (scan time,...)
3- Write “RUN_REF_MTR_CORR_BG” code (3) in INITIATE_OPERATION register
4- Poll on OPERATION_RDY register till it becomes ‘1’ or wait for the

OPERATION_RDY pin (If INTRPT reg/pin is set during this waiting period, this

NeoSpectra™ SWS62231
– Development Kits’
Developer Manual

SWS-16120001 d1

 Copyright 2018 Si-Ware Systems. This information may contain privileged, proprietary and confidential information and shall not be disclosed,
copied, distributed, reproduced or used in whole or in part without prior written permission from Si-Ware Systems

12 of 41

indicates a warning, read STATUS register to check it)
5- Read STATUS register to check the status of the operation

 RUN_REF_MTR_CORR operation to apply reference material correction routine
(reference material scan):

1- Poll on OPERATION_RDY register until it becomes ‘1’ or wait for the
OPERATION_RDY pin.

2- Write the needed configuration registers (scan time,...)
3- Write peaks’ wavelengths of the used reference material (up to 5 wavelengths).

 REF_MTR_WELL_0 = reference material peak0 wavelength.

 REF_MTR_WELL_1 = reference material peak1 wavelength (if any, 0 otherwise)

 REF_MTR_WELL_2 = reference material peak2 wavelength (if any, 0 otherwise)

 REF_MTR_WELL_3 = reference material peak3 wavelength (if any, 0 otherwise)

 REF_MTR_WELL_4 = reference material peak4 wavelength (if any, 0 otherwise)
4- Write “RUN_REF_MTR_CORR” code (4) in INITIATE_OPERATION register
5- Poll on OPERATION_RDY register till it becomes ‘1’ or wait for the

OPERATION_RDY pin (If INTRPT reg/pin is set during this waiting period, this
indicates a warning, read STATUS register to check it)

6- Read STATUS register to check the status of the operation

 PGM_REF_MTR_COEFF operation to store the result of reference material
correction routine on flash:

1- Poll on OPERATION_RDY register until it becomes ‘1’ or wait for the
OPERATION_RDY pin

2- Write “PGM_REF_MTR_COEFF” code (12) in INITIATE_OPERATION register
3- Poll on OPERATION_RDY register till it becomes ‘1’ or wait for the

OPERATION_RDY pin (If INTRPT reg/pin is set during this waiting period, this
indicates a warning, read STATUS register to check it)

4- Read STATUS register to check the status of the operation

 RESTORE_FACTORY_CORR operation to restore correction and optical gain
settings to the factory settings:

1- Poll on OPERATION_RDY register until it becomes ‘1’ or wait for the
OPERATION_RDY pin

2- Write “RESTORE_FACTORY_CORR” code (15) in INITIATE_OPERATION
register

3- Poll on OPERATION_RDY register till it becomes ‘1’ or wait for the
OPERATION_RDY pin (If INTRPT reg/pin is set during this waiting period, this
indicates a warning, read STATUS register to check it)

4- Read STATUS register to check the status of the operation

 Read PSD or WVN with a read request:

In order to get back to read PSD or WVN after another operation is requested, user
doesn’t have to repeat ACQUIRE_PSD operation given that it has done before. This is
done through RD_PSD_WVN_REQ command
1- Poll on OPERATION_RDY register until it becomes ‘1’ or wait for the
OPERATION_RDY interrupt pin
2- Write AUTO_INCB = 1
3- Write “RD_PSD_WVN_REQ” code in initiate operation register
4- Poll on OPERATION_RDY register until it becomes ‘1’ or wait for the
OPERATION_RDY interrupt pin
5- Read STATUS register to check the status of the operation
6- Read PSD_LENGTH register
7- Read the PSD from SPCTRM_DATA_OUT register successively in one frame with
the number of samples known by PSD_LENGTH
8- Close the communication frame

NeoSpectra™ SWS62231
– Development Kits’
Developer Manual

SWS-16120001 d1

 Copyright 2018 Si-Ware Systems. This information may contain privileged, proprietary and confidential information and shall not be disclosed,
copied, distributed, reproduced or used in whole or in part without prior written permission from Si-Ware Systems

13 of 41

9- Read the Wave number vector from WAVE_NUM_DATA_OUT register successively
in one frame with the number of samples determined by PSD_LENGTH
10- Close the communication frame

 Write window operation:

1- Poll on OPERATION_RDY register until it becomes ‘1’ or wait for the
OPERATION_RDY interrupt pin
2- Write the data stream length in samples in GENERIC_DATA_IN_LEN register
3- Write AUTO_INCB = 1
4- Write “WR_WIN_REQ” code in initiate operation register
5- Poll on OPERATION_RDY register till it becomes '1' or use OPERATION_RDY
interrupt pin
6- Write the window coefficients through GENERIC_DATA_IN register successively in
one frame
7- Close the communication frame
8- Poll on OPERATION_RDY reg/pin = 1 indicating entered data has been checked
9- Read STATUS register to check the status of the operation if INTRPT = 1

 Read WIN_POINTS with a read request:

1- Poll on OPERATION_RDY register until it becomes ‘1’ or wait for the
OPERATION_RDY interrupt pin
2- Write AUTO_INCB = 1
3- Write the corresponding code in INITIATE_OPERATION register
4- Poll on OPERATION_RDY register = ‘1’ or wait for the OPERATION_RDY interrupt
pin
5- Read STATUS register to check the status of the operation if INTRPT = 1
6- Read the required data from its output register successively in one frame
7- Close the communication frame

 Abort an ongoing operation:

For user to abort an ongoing operation
1- Read the ABORT status bit to make sure it is cleared
2- Write “ABORT_OPERATION” register = ‘1’
3- Poll on “ABORT” Status bit until it becomes ‘1’
4- Poll on OPERATION_RDY register = ‘1’ or wait for the OPERATION_RDY interrupt
pin

NeoSpectra™ SWS62231
– Development Kits’
Developer Manual

SWS-16120001 d1

 Copyright 2018 Si-Ware Systems. This information may contain privileged, proprietary and confidential information and shall not be disclosed,
copied, distributed, reproduced or used in whole or in part without prior written permission from Si-Ware Systems

14 of 41

Chapter 2 Mode 2: Using NeoSpectra SPI
Communication Service

To enable the Raspberry PI board to communicate with NeoSpectra Micro
DVK, an SPI communication service is provided on the Raspberry PI board. It
is a layer implemented over SPI to provide the user with the NeoSpectra Micro
set of operations. You can use this service to build your own application either
on PC or on the Raspberry PI board.

Figure ‎2.1: DVK Basic Block Diagram

1. Requirements
 NeoSpectra Micro DVK.

 Raspberry PI Zero W board.

2. Interface
 Any application (on raspberry PI or outside it) should communicate with

NeoSpectra SPI communication service using network socket:
The communication service IP is: 192.168.137.2
The read port is: 5001
The write port is: 5000

3. Development package & architecture
 Program name: NSSPIService

NSSPIService

Server

versionInfoOperations

spiDriverOperationsLogic

utils

Figure ‎2.2: NeoSpectra SPI communication service design diagram

Raspberry PI Board

NeoSpectra
Micro DVK

SPI

SPI Comm.
Service

192.168.137.2
Socket

Your
application

NeoSpectra™ SWS62231
– Development Kits’
Developer Manual

SWS-16120001 d1

 Copyright 2018 Si-Ware Systems. This information may contain privileged, proprietary and confidential information and shall not be disclosed,
copied, distributed, reproduced or used in whole or in part without prior written permission from Si-Ware Systems

15 of 41

4. Commands
A set of operations is provided by the communication service. The same packet format
should be used with all operations but only a subset of these fields is used by each
function. To perform any of the predefined operations you need to do the following:

Create the

RequestPacket

Set the packet

fields

requested for

this operation

Send the

packet to the

comm. Service

on the write

port

Receive the

response from

the SPI

Service on the

read port

Figure ‎2.3: Operation Sequence

Notice that the read and write ports should be open at the beginning of the program
before performing any operation.

4.1. Packet format
Packet Data Type Description

operation Int Specify the operation number requested

resolution Int Selects the resolution required:
0: 16nm.
1: reserved.

Mode Int Selects the run mode required:
0: Single mode
4: Continuous mode

zeroPadding Int Specify the number of points used in the
FFT:
1: 8k points.
2: 16k points.
3: 32k points.

NeoSpectra™ SWS62231
– Development Kits’
Developer Manual

SWS-16120001 d1

 Copyright 2018 Si-Ware Systems. This information may contain privileged, proprietary and confidential information and shall not be disclosed,
copied, distributed, reproduced or used in whole or in part without prior written permission from Si-Ware Systems

16 of 41

scanTime Int Duration of the scan in msec with a min
of 10ms and a max of 2

24
ms

commonWavNum Int Specifies the number of points used for
the wave number:
0: Disable common wave number
1: 65 points.
2: 129 points.
3: 257 points.
4: 513 points.
5: 1024 points.
6: 2048 points.
7: 4096 points.

opticalGain Int 0: use the optical gain settings saved on
the DVK.
1: use the calculated optical gain
settings.
2: use external optical gain settings.

apodizationSel Int Select one of the Apodization windows:
0: Boxcar
1: Gaussian
2: Happ-Genzel
3: Lorenz

GeneralData Int[40] The first five elements are used for
specifying the wavelength of the
absorption lines of a certain standard
calibrator material

‡
 during wavelength

correction routine.
And also used in other routines other
than the wavelength correction as
general purpose fields.

4.2. Operations Description

4.2.1. General Rule

 Length of the packet should be sent at the beginning of each packet.

Length Data

Length: 4 bytes specify the length of Data field
Data: packet fields required to be filled for every operation.

4.2.2. Operation: readModuleID

 Description: Returns the ModuleID of the connected Neospectra DVK

 Required data packet fields to be filled:

Operation 1

resolution Value Not Required

Mode Value Not Required

zeroPadding Value Not Required

scanTime Value Not Required

commonWavNum Value Not Required

opticalGain Value Not Required

apodizationSel Value Not Required

GeneralData Value Not Required

‡
 The values should be quantized before passing them (multiplied by 2

20
)

NeoSpectra™ SWS62231
– Development Kits’
Developer Manual

SWS-16120001 d1

 Copyright 2018 Si-Ware Systems. This information may contain privileged, proprietary and confidential information and shall not be disclosed,
copied, distributed, reproduced or used in whole or in part without prior written permission from Si-Ware Systems

17 of 41

 Received response packet:

Packet Field Length Description

ModuleID 21 bytes (Max length) Unique identifier of DVK
(null terminated string)

4.2.3. Operation: checkBoard

 Description: Check the status of the connected DVK. Returns 0 if the board is
connected and initialized.

 Required packet fields to be filled:

Operation 2

resolution Value Not Required

Mode Value Not Required

zeroPadding Value Not Required

scanTime Value Not Required

commonWavNum Value Not Required

opticalGain Value Not Required

apodizationSel Value Not Required

GeneralData Value Not Required

 Received response packet:

Packet Field Length Description

Status 1 byte 0: No error
>0: Error
(Number)

4.2.4. Operation: runPSD

 Description: Requests to perform a scan and returns a Power Spectral Density
(PSD)

 Required packet fields to be filled:

Operation 3

resolution 0

Mode Required

zeroPadding Required

scanTime Required

commonWavNum Required

opticalGain Required

apodizationSel Required

GeneralData Value Not Required

 Received response packet:

Packet Field Length Description

Status 4 bytes 0: No error
>0: Error
(Number)

Length 4 bytes Length of the PSD and
wavenumber
(Number)

PSD 8*4096 bytes Returned PSD
§

(Array of numbers, 8

§
 Returned values are quantized. It should be divided by 2

33
 to de-quantize them.

NeoSpectra™ SWS62231
– Development Kits’
Developer Manual

SWS-16120001 d1

 Copyright 2018 Si-Ware Systems. This information may contain privileged, proprietary and confidential information and shall not be disclosed,
copied, distributed, reproduced or used in whole or in part without prior written permission from Si-Ware Systems

18 of 41

bytes each)

Wavenumber 8*4096 bytes Corresponding
Wavenumber values

**

(Array of numbers, 8
bytes each)

4.2.5. Operation: runBackground

 Description: performs a background reading

 Required packet fields to be filled:

Operation 4

resolution 0

Mode Required

zeroPadding Required

scanTime Required

commonWavNum Required

opticalGain Required

apodizationSel Required

GeneralData Value Not Required

 Received response packet:

Packet Field Length Description

Status 1 byte 0: No error
>0: Error
(Number)

Operation: runAbsorbance

 Description: perform a scan and returns the absorbance.

 Prerequisite operation: runBackground

 Required packet fields to be filled:

Operation 5

resolution 0

Mode Required

zeroPadding Required

scanTime Required

commonWavNum Required

opticalGain Required

apodizationSel Required

GeneralData Value Not Required

Note: Same input values as runBackground should be used

 Received response packet:

Packet Field Length Description

Status 4 bytes 0: No error
>0: Error
(Number)

Length 4 bytes Length of the
absorbance and
wavenumber
(Number)

Absorbance 8*4096 bytes Returned absorbance
††

**

 Returned values are quantized. It should be divided by 2
30

 to de-quantize them.

NeoSpectra™ SWS62231
– Development Kits’
Developer Manual

SWS-16120001 d1

 Copyright 2018 Si-Ware Systems. This information may contain privileged, proprietary and confidential information and shall not be disclosed,
copied, distributed, reproduced or used in whole or in part without prior written permission from Si-Ware Systems

19 of 41

(Array of numbers, 8
bytes each)

Wavenumber 8*4096 bytes Corresponding
Wavenumber values

‡‡

(Array of numbers, 8
bytes each)

4.2.6. Operation: runGainAdj

 Description: Calculate the required gain for a certain sample

 Required packet fields to be filled:

Operation 6

resolution Value Not Required

Mode Value Not Required

zeroPadding Value Not Required

scanTime Value Not Required

commonWavNum Value Not Required

opticalGain Value Not Required

apodizationSel Value Not Required

GeneralData Value Not Required

 Received response packet:

Packet Field Length Description

Status 1 byte 0: No error
>0: Error
(Number)

Gain code 2 bytes

4.2.7. Operation: BurnGain

 Description: Burns the calculated gain adjustment on the DVK

 Prerequisite Operation: runGainAdj

 Required packet fields to be filled:

Operation 7

resolution Value Not Required

Mode Value Not Required

zeroPadding Value Not Required

scanTime Value Not Required

commonWavNum Value Not Required

opticalGain Value Not Required

apodizationSel Value Not Required

GeneralData Value Not Required

 Received response packet:

Packet Field Length Description

Status 1 byte 0: No error
>0: Error
(Number)

††

 Returned values are quantized. It should be divided by 2
33

 to de-quantize them
‡‡

 Returned values are quantized. It should be divided by 2
30

 to de-quantize them

NeoSpectra™ SWS62231
– Development Kits’
Developer Manual

SWS-16120001 d1

 Copyright 2018 Si-Ware Systems. This information may contain privileged, proprietary and confidential information and shall not be disclosed,
copied, distributed, reproduced or used in whole or in part without prior written permission from Si-Ware Systems

20 of 41

4.2.8. Operation: BurnSelf

 Description: Burns the self correction parameters on the DVK

 Prerequisite Operation: runSelfCorr

 Required packet fields to be filled:

Operation 8

resolution Value Not Required

Mode Value Not Required

zeroPadding Value Not Required

scanTime Value Not Required

commonWavNum Value Not Required

opticalGain Value Not Required

apodizationSel Value Not Required

GeneralData Value Not Required

 Received response packet:

Packet Field Length Description

Status 1 byte 0: No error
>0: Error
(Number)

4.2.9. Operation: BurnWLN

 Description: Burns the wavelength correction parameters on the DVK

 Prerequisite Operation: runWavelengthCorrBG, runWavelengthCorr

 Required packet fields to be filled:

Operation 9

resolution Value Not Required

Mode Value Not Required

zeroPadding Value Not Required

scanTime Value Not Required

commonWavNum Value Not Required

opticalGain Value Not Required

apodizationSel Value Not Required

GeneralData Value Not Required

 Received response packet:

Packet Field Length Description

Status 1 byte 0: No error
>0: Error
(Number)

4.2.10. Operation: runSelfCorr

 Description: Calculates the self-correction parameters

 Required packet fields to be filled:

Operation 10

resolution 0

Mode Value Not Required

zeroPadding Required

scanTime Required

commonWavNum Required

NeoSpectra™ SWS62231
– Development Kits’
Developer Manual

SWS-16120001 d1

 Copyright 2018 Si-Ware Systems. This information may contain privileged, proprietary and confidential information and shall not be disclosed,
copied, distributed, reproduced or used in whole or in part without prior written permission from Si-Ware Systems

21 of 41

opticalGain Required

apodizationSel Required

GeneralData Value Not Required

 Received response packet:

Packet Field Length Description

Status 1 byte 0: No error
>0: Error
(Number)

4.2.11. Operation: runWavelengthCorrBG

 Description: Takes a background reading for the wavelength correction

 Required packet fields to be filled:

Operation 11

resolution 0

Mode Value Not Required

zeroPadding Required

scanTime Required

commonWavNum Required

opticalGain Required

apodizationSel Required

GeneralData Value Not Required

 Received response packet:

Packet Field Length Description

Status 1 byte 0: No error
>0: Error
(Number)

4.2.12. Operation: runWavelengthCorr

 Description: performs the wavelength correction

 Prerequisite Operation: runWavelengthCorrBG

 Required packet fields to be filled:

Operation 12

resolution 0

Mode Value Not Required

zeroPadding Required

scanTime Required

commonWavNum Required

opticalGain Required

apodizationSel Required

GeneralData Peaks of the
reference material
used in wavelength
correction

§§

*Note: Maximum
peaks to be used
(5) peaks.

Note: Same input values as runWavelengthCorrBG should be used

§§

 The values should be quantized before passing them (multiplied by 2
20

)

NeoSpectra™ SWS62231
– Development Kits’
Developer Manual

SWS-16120001 d1

 Copyright 2018 Si-Ware Systems. This information may contain privileged, proprietary and confidential information and shall not be disclosed,
copied, distributed, reproduced or used in whole or in part without prior written permission from Si-Ware Systems

22 of 41

 Received response packet:

Packet Field Length Description

Status 1 byte 0: No error
>0: Error
(Number)

4.2.13. Operation: restoreDefault

 Description: restores the default gain and correction parameters

 Required packet fields to be filled:

Operation 13

resolution Value Not Required

Mode Value Not Required

zeroPadding Value Not Required

scanTime Value Not Required

commonWavNum Value Not Required

opticalGain Value Not Required

apodizationSel Value Not Required

GeneralData Value Not Required

 Received response packet:

Packet Field Length Description

Status 1 byte 0: No error
>0: Error
(Number)

4.2.14. Operation: readSoftwareVersion

 Description: returns the version of the software on the DVK

 Required packet fields to be filled:

Operation 14

resolution Value Not Required

Mode Value Not Required

zeroPadding Value Not Required

scanTime Value Not Required

commonWavNum Value Not Required

opticalGain Value Not Required

apodizationSel Value Not Required

GeneralData Value Not Required

 Received response packet:

Packet Field Length Description

DVK version 4 bytes Version of the software
on the DVK
(Number)

Pi version 4 bytes Version of the software
on the Raspberry Pi
board
(Number)

4.2.15. Operation: SourceSettings

 Description: Send the settings of the light source.

NeoSpectra™ SWS62231
– Development Kits’
Developer Manual

SWS-16120001 d1

 Copyright 2018 Si-Ware Systems. This information may contain privileged, proprietary and confidential information and shall not be disclosed,
copied, distributed, reproduced or used in whole or in part without prior written permission from Si-Ware Systems

23 of 41

 Required packet fields to be filled:

Operation 22

resolution Value Not Required

Mode Value Not Required

zeroPadding Value Not Required

scanTime Value Not Required

commonWavNum Value Not Required

opticalGain Value Not Required

apodizationSel Value Not Required

GeneralData

GeneralData [0]: byte0  lamps count
 : byte1  selection of the lamp
GeneralData [1]: byte0  t1
 : byte1  t2
 : byte2  delta t
 : byte3  1

Notes:
1. Lamps count defines if you want to use the two lamps in the light source or just

one lamp (Possible values: 1, 2).
2. Selection of the lamp defines which lamp you want to use in case you selected

lamps count = 1. (Possible values: 0, 1).
3. T1 defines delay time after opening the source in 50 ms unit. (Possible values:

Any integer number <= 255).
4. T2 defines delay time before closing the source in 50 ms unit. (Possible values:

Any integer number <= 255).
5. Delta t defines Delay time between opening/closing the two lamps of the source

in 50 ms unit. (Possible values: Any integer number <= 255).

 Received response packet:

Packet Field Length Description

Status 1 byte 0: No error
>0: Error
(Number)

4.2.16. Operation: setOpticalSettings

 Description: Select the optical gain settings to be used during the scan.

 Required packet fields to be filled:

Operation 27

resolution Value Not Required

Mode Value Not Required

zeroPadding Value Not Required

scanTime Value Not Required

commonWavNum Value Not Required

opticalGain Value Not Required

apodizationSel Value Not Required

GeneralData GeneralData [0]: gain value
*if gain value is zero, the default gain settings which
are burned on Flash will be used.

 Received response packet:

Packet Field Length Description

Status 1 byte 0: No error
>0: Error
(Number)

NeoSpectra™ SWS62231
– Development Kits’
Developer Manual

SWS-16120001 d1

 Copyright 2018 Si-Ware Systems. This information may contain privileged, proprietary and confidential information and shall not be disclosed,
copied, distributed, reproduced or used in whole or in part without prior written permission from Si-Ware Systems

24 of 41

4.2.17. Operation: injectExternalWindow

 Description: Inject external apodization window coefficients (20 coefficients
maximum).

 Required packet fields to be filled:

Operation 28

resolution Value Not Required

Mode Value Not Required

zeroPadding Value Not Required

scanTime Value Not Required

commonWavNum Value Not Required

opticalGain Value Not Required

apodizationSel Value Not Required

GeneralData GeneralData [0]: least 32 bit of coefficient0
GeneralData [1]: most 32 bit of coefficient0
GeneralData [2]: least 32 bit of coefficient1
GeneralData [3]: most 32 bit of coefficient1
GeneralData [4]: least 32 bit of coefficient2
GeneralData [5]: most 32 bit of coefficient2
…

*Note:
The apodization window coefficients must be quantized by the following fraction
lengths:

Coefficient Quantization fraction length

Coefficient 0 63

Coefficient 1 59

Coefficient 2 57

Coefficient 3 54

Coefficient 4 53

Coefficient 5 53

Coefficient 6 53

Coefficient 7 54

Coefficient 8 54

Coefficient 9 55

Coefficient 10 56

Coefficient 11 54

Coefficient 12 54

Coefficient 13 54

Coefficient 14 56

Coefficient 15 58

Coefficient 16 60

Coefficient 17 59

Coefficient 18 62

Coefficient 19 62

 Received response packet:

Packet Field Length Description

Status 1 byte 0: No error
>0: Error
(Number)

NeoSpectra™ SWS62231
– Development Kits’
Developer Manual

SWS-16120001 d1

 Copyright 2018 Si-Ware Systems. This information may contain privileged, proprietary and confidential information and shall not be disclosed,
copied, distributed, reproduced or used in whole or in part without prior written permission from Si-Ware Systems

25 of 41

Chapter 3 SDK

1. Installation
SpectroMOST Micro should be installed before proceeding with the SDK installation
steps.
After downloading the SDK package the following steps should be performed in Eclipse
IDE:

1.1. Opening Project:

Apply the following steps:

1. Click File → New → Project → Java Project.
2. Brows to your SDK folder location.
3. In source tab:

 Make sure that you’ve 3 folders marked as source folders
(p3AppManager_micro/src, spectromost_micro/src, release)

 In case not all of the previous folders were marked as source folders,
right click on that folder and select “Use as source folder”.

 Ensure that the “Default output folder” field contains the path to the bin
folder.

4. Press finish.

1.2. Run configuration:

In the run configuration window apply the following steps:

1. Java Application → new configuration.
2. In main tab: main class → search for(Userinterface).
3. In argument tab :

 VM arguments: write the following command:
-Djava.library.path="bin_path_inside_SDK_folder"
-Dswing.defaultlaf=com.sun.java.swing.plaf.nimbus.NimbusLookAndFeel

 Working directory→ ${workspace_loc:SDK_MOSTAPP/bin}

2. Software Architecture

SpectroMOST Micro application has the components described below.

1. Application software
- spectromost.jar: The source code of SpectroMOST Basic Edition is delivered

as for reference. This component should be replaced by the end-use
application software.

- 3rd party modules used by spectromost.jar:

 jcommon-1.0.21.jar

 jfreechart-1.0.17.jar

 log4j-1.2.17.jar

 miglayout15-swing.jar
2. Spectrometer driver:
- p3AppManager_micro.jar (which is the only component from which

spectromost.jar calls the different APIs)

NeoSpectra™ SWS62231
– Development Kits’
Developer Manual

SWS-16120001 d1

 Copyright 2018 Si-Ware Systems. This information may contain privileged, proprietary and confidential information and shall not be disclosed,
copied, distributed, reproduced or used in whole or in part without prior written permission from Si-Ware Systems

26 of 41

3. APIs

p3AppManager_micro APIs

 The p3AppManager component has the following APIs:

1. Interface: p3AppManagerImpl()
Description: Component Constructor

Inputs Outputs Return Type

String dir (optional): Set the
working directory of the
SDK.

- - Sync

2. Interface: addObserver()
Description: Add the caller as an observer in the p3AppManager

Inputs Outputs Return Type

Reference to the caller
instance.

- - Sync

Notes:

 Guidelines to get the status of the software:

- Your class should implement “Observer” interface.

- The class should add itself as an observer to “p3AppManager” class through
addObserver() method.

- Update() method will be invoked from p3AppManager once an action has been
finished. This method should be overridden also in your class.

3. Interface: getDeviceId()
Description: Gets the ID of the connected spectrometer module.

Inputs Outputs Return Type

- String
deviceID

Spectrometer ID Sync

4. Interface: initializeCore()
Description: Begin initializing the connected board

Inputs Outputs Return Type

- - p3AppManagerStatus:
See Table 3

Async

5. Interface: runSpec()

Description: Generate Spectrum (relative to background measurement)

Inputs Outputs Return Type

- String runTime: Scan
time in milliseconds
- isSample: false means

- p3AppManagerStatus:
See Table 3

Async

NeoSpectra™ SWS62231
– Development Kits’
Developer Manual

SWS-16120001 d1

 Copyright 2018 Si-Ware Systems. This information may contain privileged, proprietary and confidential information and shall not be disclosed,
copied, distributed, reproduced or used in whole or in part without prior written permission from Si-Ware Systems

27 of 41

background and true
means sample
- String apodization
(optional)
- String zeroPadding
(optional)

- String gainValue
- String
NumberOfDataPoints

See Table 1

- String continues mode:
Set by 1 if continues run is
taken and set by zero if
single run is taken

6. Interface: getSpecData()
Description: Get data corresponding to runSpec function

Inputs Outputs Return Type

- See Table 2 double[][] Sync

7. Interface: runInterSpec()

Description: Generate Interferogram and Power Spectral Density

Inputs Outputs Return Type

- String runTime: Scan
time in milliseconds
- String apodization
(optional)
- String zeroPadding
(optional)

- String gainValue
- String
NumberOfDataPoints

See Table 1

- String continues mode:
Set by 1 if continues run is
taken and set by zero if
single run is taken

- p3AppManagerStatus:
See Table 3

Async

8. Interface: getInterSpecData()
Description: Get data corresponding to runInterSpec command

Inputs Outputs Return Type

- See Table 2 double[][] Sync

9. Interface: checkDeviceStatus()

Description: Check the current status of the connected device

Inputs Outputs Return Type

- - p3AppManagerStatus: Sync

NeoSpectra™ SWS62231
– Development Kits’
Developer Manual

SWS-16120001 d1

 Copyright 2018 Si-Ware Systems. This information may contain privileged, proprietary and confidential information and shall not be disclosed,
copied, distributed, reproduced or used in whole or in part without prior written permission from Si-Ware Systems

28 of 41

See Table 3

10. Interface: wavelengthCalibrationBG()
Description: Perform first step of the wavelength calibration using

background reading

Inputs Outputs Return Type

- String runTime: Scan
time in milliseconds
- String apodization
(optional)
- String zeroPadding
(optional)

See Table 1
- String gainValue
- String
NumberOfDataPoints

- p3AppManagerStatus:
See Table 3

Async

11. Interface: wavelengthCalibration()

Description: Perform second step of the wavelength calibration using a
known calibrator (sample)

Inputs Outputs Return Type

- String runTime: Scan
time in milliseconds
- String calibrator Type:
name of the sample to be
used
- String apodization
(optional)
- String zeroPadding
(optional)

See Table 1
- String gainValue
- String
NumberOfDataPoints

- p3AppManagerStatus:
See Table 3

Async

12. Interface: runSpecGainAdjBG()
Description: Add a new gain for the spectrum using background

Inputs Outputs Return Type

- String runTime: Scan
time in milliseconds

- p3AppManagerStatus:
See Table 3

Async

13. Interface: getGainAdjustSpecData()

Description: Get gain settings corresponding to runSpecGainAdjBG()

Inputs Outputs Return Type

- - double[][] Sync

14. Interface: burnSpecificSettings()

Description: Burn specific gain settings and enable/disable the saving of
the wavenumber correction values on the module

NeoSpectra™ SWS62231
– Development Kits’
Developer Manual

SWS-16120001 d1

 Copyright 2018 Si-Ware Systems. This information may contain privileged, proprietary and confidential information and shall not be disclosed,
copied, distributed, reproduced or used in whole or in part without prior written permission from Si-Ware Systems

29 of 41

Inputs Outputs Return Type

- String [] settingsToBurn:
List containing the name
of the gain settings to
burn
- String updateCorrection:
flag if set to true it saves
the correction values to
the module.

- p3AppManagerStatus:
See Table 3

Async

15. Interface: restoreDefaultSettings()
Description: Restore the default gain settings and wavenumber correction

settings from the module

Inputs Outputs Return Type

- - p3AppManagerStatus:
See Table 3

Async

16. Interface: setWorkingDirectory()

Description: Sets the working directory of the application

Inputs Outputs Return Type

- String dir: Path to the

working directory

- -

Async

17. Interface: getWorkingDirectory()

Description: return the current working directory of the application

Inputs Outputs Return Type

- - - String : Path to

the working
directory

Async

18. Interface: setExternalApodizationWindow()

Description: Sets the Apodization window with an external window from
the user.

Inputs Outputs Return Type

-Long[] apodizationWindow:

External window defined by
user

- - Async

19. Interface: getSoftwareVersion()

Description: Return the software version number

Inputs Outputs Return Type

- - - String : Software

version number

Async

NeoSpectra™ SWS62231
– Development Kits’
Developer Manual

SWS-16120001 d1

 Copyright 2018 Si-Ware Systems. This information may contain privileged, proprietary and confidential information and shall not be disclosed,
copied, distributed, reproduced or used in whole or in part without prior written permission from Si-Ware Systems

30 of 41

Input Data Format
Parameter Description Value Description

Apodization

Shape of the window
to be used to multiply
the Interferogram
before FFT

Boxcar

Gaussian

Happ-Genzel

Lorenz

ZeroPadding

Number of points to
be added to the
Interferogram before
FFT

0 No points to
add

1 1*VALUE=
number of
points to add

3 3*VALUE=
number of
points to add

OpticalGainPrefix

Identifier between
Interferogram gain
settings and
Spectrum gain
settings

InterSpec

To retrieve the
gain in case of
background or
interferogram

Spec

To retrieve the
gain in case of
Sample

NumberOfDataPoints 65 pts

129 pts

257 pts

513 pts

1024 pts

2048 pts

4096 pts

Table 1: Input data format

Output Data Format
Two-dimensional array holds the spectrum/interferogram data which consists of the

following arrays:

API Name Array
Index

Description Data Set Axis Units

getInterSpecData()

0 Optical path

difference values

Interferogram

X μm

1 Photo detector’s
current intensity
values (Interference
pattern)

Interferogram

Y
nA

2 Wavenumber
values

Spectrum

X cm-1

NeoSpectra™ SWS62231
– Development Kits’
Developer Manual

SWS-16120001 d1

 Copyright 2018 Si-Ware Systems. This information may contain privileged, proprietary and confidential information and shall not be disclosed,
copied, distributed, reproduced or used in whole or in part without prior written permission from Si-Ware Systems

31 of 41

3 Power spectral
density (PSD)
values

Spectrum

Y a.u.

getSpecData()

2 Wavenumber
values

Spectrum

X cm-1

3 Absorbance values
(relative to
background
measurement)

Spectrum

Y

Abs.

 Table 2: Input data format

p3AppManagerStatus

Statu
s
Code

Enum Message

0 NO_ERROR No error

1 DEVICE_BUSY_ERROR Device is busy.

2 BOARD_DISTCONNECTED_ERROR SpectroMOST does
not detect any
connected
NeoSpectra module

3 BOARD_NOT_INITIALIZED_ERROR NeoSpectra module
is not initialized

4 UNKNOWN_ERROR Unknown error.
Contact Si-Ware
Systems

7 CONFIG_FILES_LOADING_ERROR Error in loading
resolution folder

8 CONFIG_PARAM_LENGTH_ERROR Error in resolution
folder format

11 INVALID_RUN_TIME_ERROR Invalid scan time

23 INAVLID_REG_FILE_FORMAT_ERROR Error in resolution
folder format

24 NO_OF_SCANS_DSP_ERROR DSP error

25 DSP_INTERFEROGRAM_POST_PROCESSINF_ER
ROR

DSP error

26 DSP_INTERFEROGRAM_POST_EMPTY_DATA_E
RROR

DSP error

27 DSP_INTERFEROGRAM_POST_BAD_DATA_ERR
OR

DSP error

28 UPDATE_CORR_FILE_ERROR Error updating
resolution folder

29 WHITE_LIGHT_PROCESSING_ERROR Error in saving
background data

30 DSP_INTERFEROGRAM_FFT_POST_PROCESSIN
F_ERROR

DSP error

31 INVALID_RUN_PARAMETERS_ERROR Invalid run
parameters

32 INVALID_RUN_TIME_NOT_EQUAL_BG_RUN_TIM
E_ERROR

Background
measurement scan

NeoSpectra™ SWS62231
– Development Kits’
Developer Manual

SWS-16120001 d1

 Copyright 2018 Si-Ware Systems. This information may contain privileged, proprietary and confidential information and shall not be disclosed,
copied, distributed, reproduced or used in whole or in part without prior written permission from Si-Ware Systems

32 of 41

time is not equal to
sample measurement
scan time

33 NO_VALID_BG_DATA_ERROR No valid background
measurement found

34 INTERFERO_FILE_CREATION_ERROR Error occurred during
saving interferogram
data

35 PSD_FILE_CREATION_ERROR Error occurred during
saving PSD data

36 SPECTRUM_FILE_CREATION_ERROR Error occurred during
saving spectrum data

37 GRAPHS_FOLDER_CREATION_ERROR Error occurred during
creating data folder

38 INVALID_APODIZATION_WINDOW Error occurred while
loading an invalid
apodization window
number

42 INITIATE_MIPDRIVER_ERROR Error occurred during
NeoSpectra module
initialization

43 INVALID_BOARD_CONFIGURATION_ERROR Error occurred during
NeoSpectra module
initialization

50 DATA_STREAMING_TAIF_ERROR Error occurred during
streaming from
NeoSpectra module

51 DATA_STREAMING_ERROR Error occurred during
streaming from
NeoSpectra module

52 INVALID_NOTIFICATION_ERROR Error occurred during
result return

53 INVALID_ACTION_ERROR Invalid action
performed

54 INVALID_DEVICE_ERROR Invalid device is
attached

55 THREADING_ERROR Threading error
occurred

60 ACTUATION_SETTING_ERROR Error occurred during
the setup of actuation
settings

61 DEVICE_IS_TURNED_OFF_ERROR NeoSpectra module
is switched off

62 ASIC_REGISTER_WRITING_ERROR Error occurred during
writing to chip
registers

110 FAILED_IN_ADAPTIVE_GAIN Error occurred while
save gain settings

111 ASIC_REGISTER_READING_ERROR Error occurred during
ASIC register reading

116 WAVELENGTH_CALIBRATION_ERROR Calibrator has no
wavelengths in the
detector range

117 NO_VALID_OLD_MEASUREMENT_ERROR Error occurred while
there is no old

NeoSpectra™ SWS62231
– Development Kits’
Developer Manual

SWS-16120001 d1

 Copyright 2018 Si-Ware Systems. This information may contain privileged, proprietary and confidential information and shall not be disclosed,
copied, distributed, reproduced or used in whole or in part without prior written permission from Si-Ware Systems

33 of 41

measurement found

118 DSP_UPDATE_FFT_SETTINGS_ERROR Error while make
DSP data update FFT
settings

199 USBCommunicationTimeOutError Error occurred during
USB communication

201 CommunicationWriteError Error occurred during
TAIF writing register

202 CommunicationReadError Error occurred during
TAIF reading register

203 FLASHING_CONFIGURATION_ERROR Error occurred during
flash the program

213 ROM_INVALID_ID sample ID isn't
correct

214 DEVICE_NOT_INITIALIZED_ERROR Error occurred if
device is not
initialized

218 SAMPLE_FOLDERS_INVALID_ERROR Error occurred if
sample folder is not
supported

228 OPTICAL_FILE_ERROR Error occurred during
optical sittings

229 NOT_ENOUGH_MEMORY_ERROR Not enough memory
error

230 I2_STAT_INT1_END_TIMEOUT ASIC returned error
during interpolation
from block1

231 I2_STAT_INT1_END_INVALID ASIC returned error
during interpolation
from block1

232 I2_STAT_INT1_AVG_OVERFLOW ASIC returned error
during interpolation
from block1

233 I2_STAT_INT1_CORE_INVALID_REGION ASIC returned error
during interpolation
from block1

234 I2_STAT_INT1_CORE_TIMEOUT ASIC returned error
during interpolation
from block1

235 I2_STAT_INT1_CORE_OVERFLOW ASIC returned error
during interpolation
from block1

236 I2_STAT_INT1_START_TIMEOUT ASIC returned error
during interpolation
from block1

237 I2_STAT_INT2_END_TIMEOUT ASIC returned error
during interpolation
from block2

238 I2_STAT_INT2_END_INVALID ASIC returned error
during interpolation
from block2

239 I2_STAT_INT2_AVG_OVERFLOW ASIC returned error
during interpolation
from block2

240 I2_STAT_INT2_CORE_INVALID_REGION ASIC returned error

NeoSpectra™ SWS62231
– Development Kits’
Developer Manual

SWS-16120001 d1

 Copyright 2018 Si-Ware Systems. This information may contain privileged, proprietary and confidential information and shall not be disclosed,
copied, distributed, reproduced or used in whole or in part without prior written permission from Si-Ware Systems

34 of 41

during interpolation
from block2

241 I2_STAT_INT2_CORE_TIMEOUT ASIC returned error
during interpolation
from block2

242 I2_STAT_INT2_CORE_OVERFLOW ASIC returned error
during interpolation
from block2

243 I2_STAT_INT2_START_TIMEOUT ASIC returned error
during interpolation
from block2

244 INVALID_SAMPLE_FOLDER_VERSION Version number of
sample folder isn't
supported

245 TAIF_STREAMING_ERROR_INT1

246 STREAMING_TIMEOUT_ERROR Error due to timeout
of the streaming
interpolation data

247 TAIF_STREAMING_ERROR_INT2

248 P3_FFT_ADDRESS_ERROR Error occurred during
reading FFT address
memory

300 FFT_WRONG_NUMBER_POINTS FFT number of points
is not supported

249 CRC_NOT_MATCHED Error occurred during
check the program
correctness

250 PATTERN_NOT_MATCHED Error occurred during
pattern is not
matched

251 FLASH_FAILED Error occurred while
writing on flash, no
more pages in flash
memory

252 IN_ADDRESS_ERROR Error occurred in
flash address

253 RX_OR_ERROR Error occurred in
Flash SPI slave block

254 WRITE_ENABLE_FAILED Write enable
command to flash is
failed

255 WRITE_DISABLE_FAILED Write disable
command to flash
failed

256 FLASH_BUSY_ERROR Flash is not
responding

259 P3_SPI_TAIF_ADDRESS_ERROR Error in TAIF Register
address to be written
or read

204 P3_SPI_TAIF_RX_OR_ERROR Receive overrun flag
(asserted when new
operation is started
before the previous
data received from
single access
operation is read,

NeoSpectra™ SWS62231
– Development Kits’
Developer Manual

SWS-16120001 d1

 Copyright 2018 Si-Ware Systems. This information may contain privileged, proprietary and confidential information and shall not be disclosed,
copied, distributed, reproduced or used in whole or in part without prior written permission from Si-Ware Systems

35 of 41

cleared by reading
this register)

250 P3_SPI_TAIF_IN_ADDR_ERROR Memory Address
pointer is out of
accepted range

260 P3_FIR_ADDRESS_ERROR Invalid address

261 P3_FIR_INVALID_ADD_DATA_ERROR Error flag when
addresses of input
data and output data
are not in range of
assigned memory for
filter 1--> invalid

262 P3_FIR_INVALID_SAMPLES_NUMBER_ERROR Error flag when
number of samples
less than number of
taps, operation will
not start until number
of samples >=
number of taps, 1-->
invalid

263 P3_FIR_INVALID_ADD_COEFF_ERROR Error flag when
addresses of coeff
are not in range of
assigned memory for
filter 1--> invalid

264 P3_FIR_ACC1_SAT_ERROR Saturation flag for
accumulator 1 , 1 
Saturation

265 P3_FIR_ACC2_SAT_ERROR Saturation flag for
accumulator 2 , 1 
Saturation

266 P3_FIR_ACC3_SAT_ERROR Saturation flag for
accumulator 3 , 1 
Saturation

267 P3_FIR_ACC4_SAT_ERROR Saturation flag for
accumulator 4 , 1 
Saturation

268 P3_LIN_INTRP_XNEW_ACC_SAT_ERROR Error indicates the
saturation of the
accumulated Xnew
generated internally

269 P3_LIN_INTRP_XNEW_THRES_SAT_ERROR Error indicates the
saturation of Xnew
generated internally
as being equal to or
exceeding the
saturation threshold

270 P3_LIN_INTRP_XNEW_LD_MEM_NON_MON_ERR
OR

Error indicates that
the Xnew loaded from
memory isn’t
increasing/decreasing
in a monotonic way

271 P3_LIN_INTRP_XNEW_OUT_STRTXOLD_RNG_ER
ROR

Error indicates that
Xold(i)>Xnew and
Xold(i+1)>Xnew

272 P3_LIN_INTRP_XNEW_OUT_FNLXOLD_RANGE_E Error indicates that

NeoSpectra™ SWS62231
– Development Kits’
Developer Manual

SWS-16120001 d1

 Copyright 2018 Si-Ware Systems. This information may contain privileged, proprietary and confidential information and shall not be disclosed,
copied, distributed, reproduced or used in whole or in part without prior written permission from Si-Ware Systems

36 of 41

RROR no more Xold data to
be loaded while
Xold(i)<Xnew and
Xold(i+1)<Xnew

273 P3_LIN_INTRP_XOLD_NON_MONO_ERROR Error Indicates that
Xold isn’t
increasing/decreasing
in a monotonic way

274 P3_LIN_INTRP_ZERO_DIV_ZERO_ERROR Error indicates
dividing zero by zero
which means
Xold(i+1)=Xold(i) =
xnew

275 P3_LIN_INTRP_SCALR_DIV_ZERO_ERROR Error indicates divide
by zero in scalar
division mode

276 P3_LIN_INTRP_WR_XNEW_ERR_ERROR Error indicates Flag
xnew is gated from
being written to the
memory as its length
exceeds 32 bit

277 P3_LIN_INTRP_DMA_ADDR_WRD_ALGN_ERROR Error indicates that
one of the given
addresses isn’t word
aligned (the least 2
LSB /= 0)

278 P3_LIN_INTRP_DMA_ADDR_LSB_IN_RNG_ERRO
R

Error Indicates LSB
of one of given
addresses is out of
the given address
space for the HW
Accelerator(greater
than or equal x5800)

279 P3_LIN_INTRP_DMA_ADDR_MSB_IN_RNG_ERRO
R

Error indicates MSB
of one of given
addresses is out of
the given address
space for the HW
Accelerator (not
equal x200)

280 ACTION_ABORTED Error occurred during
ISR abort operation

281 USERINTERFACE_DMA_WRITE_ERROR Error occurred during
DMA write operation

282 USERINTERFACE_WRONG_OPERATION Error occurred during
read a wrong
operation

283 WDT_WRITE_LOCK_FAILED

Error occurred during
write lock

284 WDT_WRITE_UNLOCK_FAILED Error occurred during
write unlock

285 DSP_INITIALIZATION_CONFIGURATION_FILES_IS
_EMPTY_ERROR

Error occurred during
DSP missing
configuration data

286 DSP_INITIALIZATION_CONFIGURATION_FILES_L
ENGTH_NOT_VALID_ERROR

Error occurred during
DSP initialization

NeoSpectra™ SWS62231
– Development Kits’
Developer Manual

SWS-16120001 d1

 Copyright 2018 Si-Ware Systems. This information may contain privileged, proprietary and confidential information and shall not be disclosed,
copied, distributed, reproduced or used in whole or in part without prior written permission from Si-Ware Systems

37 of 41

configuration length is
not valid

287 DSP_INITIALIZATION_INVALID_INTERFEROGRAM
_TYPE_ERROR

Error occurred during
DSP initialization for
invalid interferogram
type

288 DSP_INTERPOLATION_LINEAR_INPUT_SIZE_ZER
O_ERROR

Error occurred during
DSP interpolation
step streaming input
size is zero

289 DSP_INTERPOLATION_LINEAR_OUTPUT_SIZE_Z
ERO_ERROR

Error occurred during
DSP interpolation
step streaming output
size is zero

290 DSP_INTERPOLATION_LINEAR_DIVISION_BY_ZE
RO_ERROR

Error occurred during
DSP interpolation
step division by
ZERO

291 DSP_MATH_DIVISION_BY_ZERO_ERROR Error occurred during
DSP mathematical
division by ZERO
operation

292 DSP_Spline_NO_POINTS_ERROR Error occurred during
DSP spline function
no of points is not
correct

293 DSP_SPLINE_KNOTS_DECREASING_ERROR Error during DSP
Spline cubic
operation

294 DSP_SPLINE_UNKNOWN_ERROR Error occurred during
DSP spline for
unknown reason

295 DSP_FFT_NO_POINTS_ERROR Error occurred during
DSP FFT number of
points is not correct

296 DSP_NOISE_LEVEL_ERROR Error occurred during
DSP noise level
problem

Table 3: p3AppManagerStatus values

4. Sequence diagrams

4.1. Initialization
The initialization scenario should be run at least once for the connected
NeoSpectra module. The scenario consists of the following steps:
1. Construct the p3AppManager.jar through calling p3AppManagerImpl()

2. Add your class as an observer to be notified by the p3AppManager when
asking for an asynchronous action

3. Board initialization through calling InitializeCore()

4. Waiting for finishing initialization

5. Your class will be notified when module initialization is finished

NeoSpectra™ SWS62231
– Development Kits’
Developer Manual

SWS-16120001 d1

 Copyright 2018 Si-Ware Systems. This information may contain privileged, proprietary and confidential information and shall not be disclosed,
copied, distributed, reproduced or used in whole or in part without prior written permission from Si-Ware Systems

38 of 41

Figure 1: Initialization Sequence

4.2. Interferogram & PSD Run
The Interferogram & PSDscenario consists of the following steps:
1. Start the run procedure through calling runInterSpec(RunTime)
2. Waiting for finishing run

3. Your class will be notified when the run is finished

4. Getting the data through calling getInterSpecData()

Figure : Interferogram & PSD Run Sequence

NeoSpectra™ SWS62231
– Development Kits’
Developer Manual

SWS-16120001 d1

 Copyright 2018 Si-Ware Systems. This information may contain privileged, proprietary and confidential information and shall not be disclosed,
copied, distributed, reproduced or used in whole or in part without prior written permission from Si-Ware Systems

39 of 41

Figure 3: Spectrum Run Sequence

4.3. Spectrum Run
The Spectrum scenario consists of the following steps:
1. Start the background run procedure through calling runSpec(RunTime,

isSample=false)

2. Waiting for finishing background run

3. Your class will be notified when the background run is finished

4. Start the sample run procedure through calling runSpec(RunTime,
isSample=true)

5. Waiting for finishing sample run

6. Your class will be notified when the sample run is finished

7. Getting the data through calling getSpecData()

4.4. Adding Gain Settings for the Interferogram and
Spectrum
Adding new gain settings for the Interferogram/ Spectrum consists of the
following steps:
1. Start adjusting the gain using background by calling

runSpecGainAdjBG (RunTime)

2. Waiting for finishing background run

3. Your class will be notified when the background run is finished

4. Get the new gain settings by calling getGainAdjustSpecData ()

5. To restore the default gain settings from the module, call the function
restoreDefaultSettings()

NeoSpectra™ SWS62231
– Development Kits’
Developer Manual

SWS-16120001 d1

 Copyright 2018 Si-Ware Systems. This information may contain privileged, proprietary and confidential information and shall not be disclosed,
copied, distributed, reproduced or used in whole or in part without prior written permission from Si-Ware Systems

40 of 41

Figure 4: Interferogram Gain Adjustment

4.5. Perform Correction
Correction can be done using one of two techniques:

4.5.1. Perform Self-Correction

1. Start the correction using runCalibCorr() with a background reading

2. Wait for finishing background run

Figure 4: Self Correction

4.5.1. Perform Correction Using a Standard Sample

1. Start the first step of correction using wavelengthCalibrationBG() with a
background reading

2. Wait for finishing background run

3. Start the second step of the correction using wavelengthCalibration() with a
sample reading

4. Wait for finishing the sample run

NeoSpectra™ SWS62231
– Development Kits’
Developer Manual

SWS-16120001 d1

 Copyright 2018 Si-Ware Systems. This information may contain privileged, proprietary and confidential information and shall not be disclosed,
copied, distributed, reproduced or used in whole or in part without prior written permission from Si-Ware Systems

41 of 41

Figure 5: Correction Using Standard Sample

