
 

 

 
COMPLETE OPERATIONAL EXAMPLE  

(PYTHON AND NI-DAQ) 
 

NIREOS SRL 

Via Giovanni Durando, 39 - 20158 Milan (Italy) 

info@nireos.com | www.nireos.com 

mailto:info@nireos.com
http://www.nireos.com/


NIREOS | GEMINI INTERFEROMETER | COMPLETE OPERATIONAL EXAMPLE 1.0-A 

1 | P a g e

This manual is continuously updated by our staff to help our customers to use the GEMINI 

interferometer at the top of its potential. You can always find the latest version of this 

manual at www.nireos.com/downloads  

We made our best to assure that the manual is clearly written and does not contain errors, 

but we are aware that perfection can not be reached. Please contact us at info@nireos.com 

in case you spot an error or in case you find hard to understand some parts of the manual. 

Subject to change without notice, download the last version at 

www.nireos.com/downloads 

Document Version: 1.0-A 

mailto:info@nireos.com


NIREOS | GEMINI INTERFEROMETER | COMPLETE OPERATIONAL EXAMPLE 1.0-A 

2 | P a g e

Contents 

1. Introduction ........................................................................................................................ 3 

2. Python Functions ................................................................................................................ 3 

2.1 Initialization.py ........................................................................................................... 4 

2.2 Movements.py .................................................................................................................. 5 

2.2.1 move_absolute .......................................................................................................... 5 

2.2.2 move_relative ............................................................................................................ 5 

2.2.3 move_home ........................................................................................................... 6 

2.2.4 get_position ........................................................................................................... 6 

2.2.5 get_status ............................................................................................................... 6 

2.2.6 get_scale ................................................................................................................ 6 

2.3 Data_acquisition ............................................................................................................... 7 

2.4 Find_scan_range ............................................................................................................... 7 

2.5 Spectral_calibration .......................................................................................................... 8 

2.6 Get_calibrated_position_axis ........................................................................................... 9 

2.7 Get_spectrum_dft .......................................................................................................... 10 

2.8 Apodization ..................................................................................................................... 10 

2.9 Close_connection ........................................................................................................... 11 

3. Python Functions .......................................................... 

Configuration Files.................................................................................................................... 13 

*_parameters_int.txt ............................................................................................................ 13 

*_parameters_scale.txt ........................................................................................................ 13 

*_parameters_cal.txt............................................................................................................ 13 



NIREOS | GEMINI INTERFEROMETER | COMPLETE OPERATIONAL EXAMPLE 1.0-A 

3 | P a g e

1. Introduction

The aim of this manual is to show a step by step example on how to properly acquire spectra 

with NIREOS GEMINI Interferometer using Python programming language. This manual is 

based and tested on Python 3.7 (32 bit/64 bit) on Windows operative system. This software 

controls the positioner inside the interferometer, and it is based on MCSControl.dll library 

provided by Smaract (For further details see Smaract MCS programmers Guide manual).  The 

MCS_Installer_3.8.9 must be correctly installed to use this software. The python scripts use 

external packages as: Numpy, Pandas, Scipy and Matplotlib, they must be imported. 

As an example, the acquisition part is done using a National Instrument Data AcQuisition (DAQ) 

Card (USB-6002) and the software uses DAQmx software. The DAQ card and the DAQmx 

software are not included in the GEMINI interferometer. 

This example contains all the steps needed to acquire successfully an input light interferogram 

and then compute its correspondent spectrum.  This manual is intended for user with a 

previous knowledge of the principle of Fourier transform spectroscopy and on the GEMINI 

interferometer operating principle. See the Theoretical Manual for a detailed explanation. A 

basic knowledge of the Python programming language is required. All the processing codes to 

retrieve the light spectral information are the results of year of research in the Fourier 

Transform spectroscopy field and have been tested and applied to a great variety of scientific 

applications. Please have a look on www.nireos.com to see the wide applicability of this device. 

2. Python Functions

In order to move and control the positioner, the already implemented function available in the 

MCSControl.dll library are used. These functions are written in C programming language, and 

in order to use them in Python it is necessary to use the package called ctypes.  

Ctypes is a foreign function library for Python. It provides C compatible data types, and allows 

calling functions in DLLs or shared libraries. 

To import the library you have to use the command ctypes.CDLL(‘ PATH and name of the 

library’). In our case : 

lib = ctypes.CDLL('MCSControl.dll') 

To call a C function it is necessary to specify the input arguments that that function receives 
as input through the library.function. argtypes=[ctypes.type, ctypes.type]. 

If a pointer to the variable is needed you can pass it as POINTER(ctypes.type) 

http://www.nireos.com/


NIREOS | GEMINI INTERFEROMETER | COMPLETE OPERATIONAL EXAMPLE 1.0-A 

4 | P a g e

ctypes type C type Python type 

c_bool _Bool bool (1) 

c_char char 1-character bytes object

c_wchar wchar_t 1-character string

c_byte char int 

c_int int int 

c_uint unsigned int int 

c_long long int 

c_ulong unsigned long int 

c_float float float 

c_double double float 

c_longdouble long double float 

c_char_p char * (NUL terminated) bytes object or None 

Also the packages Numpy and Scipy are needed to take advantage of their mathematical 

functions. 

Import the package nidaqmx to control and acquire signals from the DAQ module. 

2.1 Initialization.py 

This function handle the connection to the controller and initialize the positione inside the 

interferometer and move the interferometer to the home position, where the delay is zero. 

The home position is calibrated in factory and saved in the non-volatile memory of the motor 

driver. The home is the position where the two replicas have zero relative delay.  

In order to connect to the controller the function SA_OpenSystem is exploited, it takes as input: 



NIREOS | GEMINI INTERFEROMETER | COMPLETE OPERATIONAL EXAMPLE 1.0-A 

 5 | P a g e  

 

• system_locator: string that identifies the system, it is addressed as usb:id:<sn>, where sn is the 

serial number of the controller which is printed on it. 

• options: options for the initialization function. List below 

• reset: the controller’s settings are reset on open 

• async/sync: choose between asynchronous connection, async, or synchronous one, sync 

If the execution was successful the function gives the output: 

• system_index: returns a handle to the opened system.  

which is the handle to the opened system,  it is needed for all the other controller’s functions. 

The value channel_index is already set to “0”, since there is just one positioner plug to the 

controller. 

Two communication modes can be used to establish the connection to the controller, 

synchronous and asynchronous. In this guide we will deal only with the synchronous case, even 

though it is less flexible it is simpler and for our purposes it suites better (for further knowledge 

about asynchronous mode see MCS - Modular Control System Programmer's Guide).  

 

2.2 Movements.py 

This file contains the methods necessary to move the positioner and get values from it. 

 

2.2.1 move_absolute 

This function moves the motor in an absolute position chosen by the user and  exploits the 

function SA_GotoPositionAbsolute_S  and it accepts as input: 

• system_index: that is the handle to the opened system 

• channel_index: selects the channel of the selected system 

• movement: absolute position to move to in nanometers. 

 

2.2.2 move_relative 

This function moves the motor in a relative position with respect to the current one. It exploits 

the function SA_GotoPositionRelative_S  and takes as input: 

• system_index: that is the handle to the opened system 

• channel_index: selects the channel of the selected system 

• movement: relative position to move to in nanometers. 



NIREOS | GEMINI INTERFEROMETER | COMPLETE OPERATIONAL EXAMPLE 1.0-A 

 6 | P a g e  

 

 

2.2.3 move_home 

This function moves the motor in the home position, where the delay between the two replicas is zero 

and the absolute position is zero. It exploits the function SA_GotoPositionAbsolute_S  as well, in which 

the absolute position as input is set to zero. It accepts as input: 

• system_index: that is the handle to the opened system 

• channel_index: selects the channel of the selected system 

• movement: set to “0” 

 

2.2.4 get_position 

This function gives the current position of the positioner, in nanometers, with respect to the 

home position set. It exploits the function  SA_GetPosition_S, it takes as input: 

• system_index: that is the handle to the opened system 

• channel_index: selects the channel of the selected system 

If the execution of the function was successful it returns: 

• the value of current position 

 

2.2.5 get_status 

This function gives the current position of the positioner, in nanometers, with respect to the 

home position set. It exploits the function  SA_GetStatus_S, it takes as input: 

• system_index: that is the handle to the opened system. 

• channel_index: selects the channel of the selected system. 

If the execution of the function was successful it returns: 

• An integer value that describes the current status of the positioner: see MCS Programmers 

Guide.pdf to understand the  meaning of the codes. 

 

2.2.6 get_scale 

This function retrieves the currently configured scale of the controller, in nanometers, the 

distance between the physical zero of the positioner and the one of the interferometer. It 

exploits the function  SA_GetScale_S, it takes as input: 

• system_index: that is the handle to the opened system. 



NIREOS | GEMINI INTERFEROMETER | COMPLETE OPERATIONAL EXAMPLE 1.0-A 

 7 | P a g e  

 

• channel_index: selects the channel of the selected system. 

If the execution of the function was successful it returns: 

• An integer value that is the scale, in nanometers. 

 

 

2.3 Data_acquisition 

The package nidaqmx has to be imported. The full and detailed guide can be found at 

https://nidaqmx-python.readthedocs.io/en/latest/. 

We will exploit the nidaqmx.task.Task object. Usually it is named as task. 

The inherent function task.ai_channels.add_ai_voltage_chan("Dev_name/channel", 

terminal_config = TerminalConfiguration.XXX) initializes the connection and add the value of 

the channel to the buffer. Then the value is read throughout the function 

data=task.read(number_of_samples_per_channel=”x”) that return a list. 

N.B. This function work only with the data acquisition systems from National Instruments. If 

you have another data acquisition system, you have to replace this part of the code with the 

one provided by the manufacturer. 

 

2.4 Find_scan_range 

The find scan range function returns the maximum excursion needed to achieve a specific 

spectral resolution at a certain wavelength. To compute the maximum excursion it uses the 

formula: 

 
2

( ) sin
maxExcursion

n



  
=
 

 

Where   is the wavelength. ( )n   is the wavelength dependent birefringence difference 

between the ordinary axis and extraordinary one.   is the wedge apex angle. The 

birefringence is taken from a database from a .csv file. Since the values in the file are 

discretized, the birefringence at the wavelength   is retrieved by interpolation. 

INPUTS: 

• Resolution [nm] (Float): Desired resolution at the selected wavelength in nanometers. 

• Wavelength [nm] (Float): Wavelength at which the resolution is associated. 

OUTPUTS: 

https://nidaqmx-python.readthedocs.io/en/latest/


NIREOS | GEMINI INTERFEROMETER | COMPLETE OPERATIONAL EXAMPLE 1.0-A 

 8 | P a g e  

 

• Start [mm] (Float): Starting position of the scan to achieve the desired Resolution [nm] at the 

selected Wavelength [nm]  

• End [mm] (Float): Ending position of the scan to achieve the desired Resolution [nm] at the 

selected Wavelength [nm]  

 

2.5 Spectral_calibration 

The Spectral Calibration returns the polynomial coefficients of the fitting function that converts 

from 
1

𝑊𝑎𝑣𝑒𝑙𝑒𝑛𝑔𝑡ℎ
  [nm-1] to spatial frequency [mm-1] and vice-versa. It is possible to modify the 

calibration by editing the lookup table inside the file “*_parameters_cal.txt”, where the * 

stands for the serial number. In the lookup table each wavelength in nanometers is associated 

univocally to a frequency in mm-1. 

N.B. the GEMINI interferometer is already calibrated when shipped. The GEMINI 

interferometer is designed to be an ultra-stable device; therefore, the calibration remains 

stable over long periods of time.  Please see the Theoretical Manual for more details on the 

calibration procedure of the interferometer. 

 

INPUTS: 

• [NONE] 

OUTPUTS: 

• P_freq2wave [from freq. to 1/wave] (Array of float): This array contains a set of polynomial 

coefficients in ascending order of power. These are the polynomial coefficients of the function 

that converts from frequencies in mm-1 to 1/wavelength in nm-1. Mathematically, using the set 

of polynomial coefficients to convert from a specific frequency 0f  to the correspondent 

wavelength in nm one obtains: 

1

𝑊𝑎𝑣𝑒𝑙𝑒𝑛𝑔𝑡ℎ(𝑓0)
= 𝑃0 + 𝑃1𝑓0 

 

• P_wave2freq [from 1/wave to freq.] (Array of float): This array contains a set of polynomial 

coefficients in ascending order of power. These are the polynomial coefficients of the function 

that converts from 1/wavelength in nm-1 to frequencies in mm-1. Mathematically, using the set 

of polynomial coefficients to convert from a specific wavelength 𝑊𝑎𝑣𝑒𝑙𝑒𝑙𝑛𝑔𝑡ℎ0 to the 

correspondent frequency in mm-1 one obtains: 

𝑓 = 𝑃0 + 𝑃1
1

𝑊𝑎𝑣𝑒𝑙𝑒𝑛𝑔𝑡ℎ0
 



NIREOS | GEMINI INTERFEROMETER | COMPLETE OPERATIONAL EXAMPLE 1.0-A 

 9 | P a g e  

 

 

2.6 Get_calibrated_position_axis 

This function receives the encoder position array and the motor current scale value and returns 

the interferometric calibrated position axis in millimeters. This function eliminates artifacts due 

to motor linear slide imperfections. To measure the actual scale of the motor inside GEMINI 

interferometer use the get_scale function in Movements.py. 

Thanks to the GEMINI high reproducibility, to have an interferometric calibrated position axis, 

it is enough to measure the interferogram of a high temporal coherent source (e.g. Lasers), in 

our case it is a He-Ne, over the whole scan range of the motor. The measured interferogram 

together with the correspondent position array as recorded by the encoder should be saved in 

a file with the name: “*_parameters_int.txt”, * stands for the serial number. This file must be 

placed in the same folder of the python script.  

N.B. Please note that the GEMINI interferometer is shipped already calibrated and there is in 

general no need to recalibrate the interferometer over a long period of time. Please Contact 

NIREOS customer service at info@nireos.com for hints on the calibration procedure. 

 

The script firstly reads the positions and signal from the file “*_parameters_int.txt” i.e. the 

reference interferogram. It then calculates the ratio between the measured positions and the 

reference positions, this factor will be used for oversample the measured positions throughout 

interpolation. Later it interpolates the reference on the oversampled measured positions. 

Thanks to the function get_real_position_axis it  calculates the calibrated axis from a reference 

interferogram. At the end the calibrated positions are downsampled and normalized. 

 

INPUTS: 

• Position axis [mm] (Array of float): This array contains all the position values correspondent to 

each acquired interferogram point. 

• Scale (Integer): this is the motor scale value obtained through the get_scale function. This value 

is needed to reference the motor position to the motor physical reference. 

OUTPUTS: 

• Calibrated_position_axis [mm] (Array of float): This array contains the interferometrically 

calibrated position values. 

mailto:info@nireos.com


NIREOS | GEMINI INTERFEROMETER | COMPLETE OPERATIONAL EXAMPLE 1.0-A 

 10 | P a g e  

 

2.7 Get_spectrum_dft 

This function contains all the steps to convert an interferogram into a spectrum depending on 

wavelength [nm] and spatial frequency [mm-1]. First the coefficients to convert from wavelength and 

spatial frequency are retrieved, throughout the function spatial_calibration. Then the interferogram 

mean value is subtracted from the interferogram, using a moving average method, which creates a 

series of averages of different subsets of the full data set, thanks to the function movmean . The result 

is multiplied by a gaussian function (the so-called apodization window). The normalized standard 

deviation of the gaussian window with respect to the number of points of the interferogram is a value 

that has to be set in the script, the variable apodization width. Then it calculates the Fourier transform 

of the interferogram as a function of the position axis to get the spectrum. It gives as output the arrays 

of the spatial frequencies, wavelengths and the spectrum. 

INPUTS: 

• Apodization_width (Float): the normalized standard deviation with respect to the number of 

points of the interferometric signal. 

• Interferogram (Array of float): the interferometric signal, the so called interferogram to be 

Fourier transformed. 

• Position_axis [mm] (Array of float): The position array correspondent to the interferogram, 

each point of the array should correspond in an ordered way to the correspondent point of the 

interferogram.   

• Start_wavelength [nm] (Float): Start Wavelength in nanometers from which the spectrum is 

computed. 

• End_wavelength [nm] (Float): End Wavelength in nanometers up to which the spectrum is 

computed. 

• Samples (Integer): Number of spectral points to be computed. 

OUTPUTS: 

• Spectrum (1D array of float): output spectrum of the interferogram with the selected number 

of points. 

• Wave (1D array of float):  wavelength axis corresponding to the spectrum. 

• Freq (1D array of float): spatial frequency axis corresponding to the spectrum. 

 

2.8 Apodization 

This function multiplies the interferogram (signal) by an asymmetric gaussian window 

composed by a left and a right tail gaussian with the same normalized apodization width. First 

it find the zero position of the interferogram, the absolute minimum value. It splits the 

position_axis in two halves with respect to the zero found. Then it calculates the two Gaussian 



NIREOS | GEMINI INTERFEROMETER | COMPLETE OPERATIONAL EXAMPLE 1.0-A 

 11 | P a g e  

 

windows separately and afterwards it merges them together. At the end it multiply the input 

interferogram with the apodization window. 

INPUTS: 

• Apodization width (Float): the normalized standard deviation with respect to the number of 

points of the interferometric signal. 

• Interferogram (Array of float): the input interferogram (signal) that has to be apodized. 

• Position_axis [mm] (Array of float): the position array correspondent to the interferogram, each 

point of the array should correspond in an ordered way to the correspondent point of the 

interferogram.   

OUTPUTS: 

• Apodized_interferogram (Array of float): it is the input interferogram multiplied by the 

apodization window. 

 

2.9 Close_connection 

This function is responsible for closing the connection to the controller once you finish with 

measurements or experiments and you want to unplug the GEMINI from your computer. As 

for the initialization function, it exploits the MCSControl.dll library from Smaract. It takes as 

input: 

• system_index: that is the handle to the opened system. 

• channel_index: selects the channel of the selected system. 

 

 

3. Main.py 

This script is the main method of the program, the one has to be run. Before run it, in the first 

part, between the comments, you have to change the parameters accordingly to your 

measurements. 

PARAMETERS: 

• Start_wave [nm]: shortest wavelength of interest of the measured light. 

• End_wave [nm]: longest wavelength of interest of the measured light. 

• Resolution [nm]: resolution at the central wavelength of the defined spectral band. 



NIREOS | GEMINI INTERFEROMETER | COMPLETE OPERATIONAL EXAMPLE 1.0-A 

 12 | P a g e  

 

• Sampling_factor: minimum number of points per period of the interferogram. This control 

sets automatically the number of steps of the scan. 

• Spectral_points: number of spectral points of the output spectra. 

• Apodization_width: standard deviation of the gaussian apodization window. 

 

First it will initialize the controller and the positioner. Then it computes the necessary scan range and 

number of steps. Later it performs the acquisition of the interferogram, at the end it computes the 

Fourier transform to retrieve the spectrums. 

After all the computational part, the plots of the spectrums, one with respect to wavelength and the 

other with respect to the spatial frequency, will be showed. 

At the end, after the closing of the plot, there is the possibility to save the interferogram in a txt file, by 

choosing the file name, and automatically a folder with the date is created. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



NIREOS | GEMINI INTERFEROMETER | COMPLETE OPERATIONAL EXAMPLE 1.0-A 

 13 | P a g e  

 

Configuration Files 

The GEMINI interferometer is shipped already calibrated and configurated. In order to work 

properly, this example software needs three configuration files that must be present in the 

operational example working folder together with python script. 

 

*_parameters_int.txt 

This file contains the interferogram of a highly temporal coherent source such as HeNe laser 

sampled over the whole scan range of the GEMINI interferometer. The file is composed of two 

rows the first one contains the position axis and the second one the interferogram values at 

the correspondent positions. This file is used to calibrate the position axis of the interferometer 

with an extremely high precision. The file is used inside the Get_Calibrated_position_axis.vi to 

calculate the position axis with interferometric accuracy, therefore it is always recommended 

to use this file. The position axis calibration procedure is simply an interferogram acquisition 

of a highly temporally coherent source such as HeNe laser over the whole scan range of the 

motor. The Acquired interferogram should be saved together with its correspondent position 

axis inside the “*_parameters_int.txt” file. The first row of the file must contain the position 

axis in millimeters and the second row must contain the correspondent interferogram values. 

If you need further information on how to perform the position axis calibration procedure, 

please contact us at info@nireos.com. 

 

*_parameters_scale.txt 

This file contains the scale parameter of the positioning system and it is used to find the 

physical zero of the interferometer. Warning: Do not modify this file! Changing the value 

contained in this file require invalidate the position axis calibration procedure performed in 

factory.  

 

*_parameters_cal.txt 

This file contains the conversion table from mm-1 to wavelength and it is used to calibrate the 

spectral axis. The user can add or modify any of the entry and the software will automatically 

take into account the change to compute the spectral axis.    

 



NIREOS | GEMINI INTERFEROMETER | COMPLETE OPERATIONAL EXAMPLE 1.0-A 

 14 | P a g e  

 

 

 

 



 

 

 

 

 

 


